首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past two decades, the reaction mechanism of C−C bond formation from either methanol or dimethyl ether (DME) in the methanol‐to‐hydrocarbons (MTH) process has been a highly controversial issue. Described here is the first observation of a surface methyleneoxy analogue, originating from the surface‐activated DME, by in situ solid‐state NMR spectroscopy, a species crucial to the first C−C bond formation in the MTH process. New insights into the first C−C bond formation were provided, thus suggesting DME/methanol activation and direct C−C bond formation by an interesting synergetic mechanism, involving C−H bond breakage and C−C bond coupling during the initial methanol reaction within the chemical environment of the zeolite catalyst.  相似文献   

2.
In the past two decades, the reaction mechanism of C−C bond formation from either methanol or dimethyl ether (DME) in the methanol-to-hydrocarbons (MTH) process has been a highly controversial issue. Described here is the first observation of a surface methyleneoxy analogue, originating from the surface-activated DME, by in situ solid-state NMR spectroscopy, a species crucial to the first C−C bond formation in the MTH process. New insights into the first C−C bond formation were provided, thus suggesting DME/methanol activation and direct C−C bond formation by an interesting synergetic mechanism, involving C−H bond breakage and C−C bond coupling during the initial methanol reaction within the chemical environment of the zeolite catalyst.  相似文献   

3.
In this paper, the mechanism of the full catalytic cycle for binuclear Cu(I)-catalyzed sulfonyl azide-alkyne cycloaddition reaction for the synthesis of triazolopyrimidines was rationalized by density functional theoretical (DFT) calculations. The computed reaction route consists of: (a) formation of dicopper intermediates, including C−H activation of terminal alkyne, 3+2 ring cycloaddition and ring-reducing reaction and transmetalation, (b) interrupted CuAAC reaction, including di-copper catalyzed ring-opening of 2H-azirines and C−C bond formation to generate the copper-triazoles and -ketenimines, (c) two-step C−N cross-coupling and following (d) multi-step hydrogen transfer by the hydrogen bonding chain of water to promote the C−N formation and another C−N cleavage through the removal of p-tolyl sulfonamides. Our DFT results indicate that the multi-step hydrogen transfer process is the rate-determining step along the potential energy surface profile. The explicit water model was used for systematic determination of barrier for C−C cross-coupling, C−N bond formation and cleavage, and p-tolylsulfonamide removal. A critical insight in the interrupted CuAAC reaction was proposed. Further prediction interprets H2O hydrogen bond chain plays an important role in C−N bond formation and cleavage, and the removal of p-tolylsulfonamide. This may have fundamental guidance on the design of 1, 5-herterocyclic functionalized triazolopyrimidines via interrupted CuAAC rearrangement reaction, as well as hydrogen bond chain of water.  相似文献   

4.
Selective activation/functionalization of C−H bonds has emerged as an atom- and step-economical process at the forefront of modern synthetic chemistry. This work reports palladium-catalyzed exclusively para-selective C−H activation/aryl–aryl bond formation with a preference over N-arylation under the Buchwald–Hartwig amination reaction of 4-phenylamino[2.2]paracyclophane. This innovative synthetic strategy allows a facile preparation of [2.2]paracyclophane derivatives featuring disparate para-substitutions at C-4 and C-7 positions in a highly selective manner, gives access to a series of potential candidates for [2.2]paracyclophane-derived new planar chiral ligands. The unprecedented behavior in reactivity and preferential selectivity of C−C coupling over C−N bond formation via C−H activation is unique to the [2.2]paracyclophane scaffold compared to the non-cyclophane analogue under the same reaction conditions. Selective C−H activation/aryl–aryl bond formation and sequential C−N coupling product formation is evidenced unambiguously by X-ray crystallography.  相似文献   

5.
Iodine catalysis was developed for aliphatic fluorination through light-promoted homolytic C−H bond cleavage. The intermediary formation of amidyl radicals enables selective C−H functionalization via carbon-centered radicals. For the subsequent C−F bond formation, previous methods have typically been limited by a requirement for electrophilic fluorine reagents. We here demonstrate that the intermediary instalment of a carbon–iodine bond sets the stage for an umpolung, thereby establishing an unprecedented nucleophilic fluorination pathway.  相似文献   

6.
The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α‐hydroxy C−H bonds. This approach employs zinc‐mediated alcohol deprotonation to activate α‐hydroxy C−H bonds while simultaneously suppressing C−O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn‐based Lewis acids also deactivates other hydridic bonds such as α‐amino and α‐oxy C−H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3‐step synthesis of the drug Prozac exemplifies the utility of this new method.  相似文献   

7.
Mechanically induced C−C bond formation was demonstrated by the laser driven shock wave generated in liquid normal alkanes at room temperature. Gas chromatography mass spectrometry analysis revealed the dehydrogenation condensation between two alkane molecules, for seven normal alkanes from pentane to undecane. Major products were identified to be linear and branched alkane molecules with double the number of carbons, and exactly coincided with the molecules predicted by supposing that a C−C bond was formed between two starting molecules. The production of the alkane molecules showed that the C−C bond formation occurred almost evenly at all the carbon positions. The dependence of the production on the laser pulse energy clearly indicated that the process was attributed to the shock wave. The C−C bond formation observed was not a conventional passive chemical reaction but an unprecedented active reaction.  相似文献   

8.
The photochemically activated Paterno-Büchi reaction mechanism following the singlet excited-state reaction path was analyzed based on a bonding evolution framework. The electronic rearrangements, which describe the mechanism of oxetane formation via carbon-oxygen attack (C−O), comprises of the electronic activation of formaldehyde and accumulation of pairing density on the O once the reaction system is approaching the conical intersection point. Our theoretical evidence based on the ELF topology shows that the C−O bond is formed in the ground-state surface (via C−O attack) returning from the S1 surface accompanied by 1,4-singlet diradical formation. Subsequently, the reaction center is fully activated near the transition state (TS), and the ring-closure (yielding oxetane) involves the C−C bond formation after the TS. For the carbon-carbon attack (C−C), both reactants (formaldehyde and ethylene) are activated, leading to C−C bond formation in the S1 excited state before reaching the conical intersection region. Finally, the C−O formation occurs in the ground-state surface, resulting from the pair density flowing primarily from the C to O atom.  相似文献   

9.
Developing methods that activate C−H bonds directly with high selectivity for C−C bond formation in complex organic synthesis has been a major chemistry challenge. Recently it has been shown that photoactivation of weakly polarized C−H bonds can be carried out inside a cationic water-soluble nanocage with visible light-mediated host-guest charge transfer (CT) chemistry. Using this novel photoredox activation paradigm, here we demonstrate C−C bond formation to photo-generate 1,3-diynes at room temperature in water from terminal aromatic alkynes for the first time. The formation of cavity-confined alkyne radical cation and the proton-removed neutral radical species highlight the unique C−C coupling step driven by supramolecular preorganization.  相似文献   

10.
The molecular mechanism of the reactions between four carbonyl oxides and ammonia/water are investigated using the M06-2X functional together with 6-311++G(d,p) basis set. The analysis of activation and reaction enthalpy shows that the exothermicity of each process increased with the substitution of electron donating substituents (methyl and ethenyl). Along each reaction pathway, two new chemical bonds C−N/C−O and O−H are expected to form. A detailed analysis of the flow of the electron density during their formation have been characterized from the perspective of bonding evolution theory (BET). For all reaction pathways, BET revealed that the process of C−N and O−H bond formation takes place within four structural stability domains (SSD), which can be summarized as follows: the depopulation of V(N) basin with the formation of first C−N bond (appearance of V(C,N) basin), cleavage of N−H bond with the creation of V(N) and V(H) monosynaptic basin, and finally the V(H,O) disynaptic basin related to O−H bond. On the other hand, in the case of water, the cleavage of O−H bond with the formation of V(O) and V(H) basins is the first stage, followed by the formation of the O−H bond as a second stage, and finally the creation of C−O bond.  相似文献   

11.
Al/P- and Ga/P-based frustrated Lewis pairs (FLPs) reacted with an azirine under mild conditions under cleavage of the heterocycle on two different positions. Opening of the C−C bond yielded an unusual nitrile–ylide adduct in which a C−N moiety coordinated to the FLP backbone. Cleavage of a C−N bond afforded the thermodynamically favored enamine adduct with the N atom bound to P and Al or Ga atoms. Ring closure was observed upon treatment of an Al/P FLP with electronically unsaturated substrates (4-(1-cyclohexenyl)-1-aza-but-1-en-3-ynes) and yielded by C−N bond formation hexahydroquinoline derivatives, which coordinated to the FLP through P−C and Al−C bonds. Diphenylcyclopropenone showed a diverse reactivity, which depending on steric shielding and the polarizing effect of Al or Ga atoms afforded different products. An AltBu2/P FLP yielded an adduct with the C=O group coordinated to P and Al. The dineopentyl derivative gave an equilibrium mixture consisting of a similar product and a simple adduct with O bound to Al and a three-coordinate P atom. Both compounds co-crystallize. The Ga/P FLP only formed the simple adduct with the same substrate. Rearrangement resulted in all cases in C3-ring cleavage and migration of a mesityl group from P to a former ring C atom by C−C bond formation. Diphenylthiocyclopropenone (evidence for the presence of P=C bonds) and an imine derivative afforded similar products.  相似文献   

12.
Nickel‐catalyzed coupling of benzyl acrylates with activated ketones and imines provides γ‐butyrolactones and lactams, respectively. The benzyl alcohol byproduct released during the lactonization/lactamization event is relayed to the next cycle where it serves as the reductant for C−C bond formation. This strategy represents a conceptually unique approach to transfer‐hydrogenative C−C bond formation, thus providing examples of reductive heterocyclizations where hydrogen embedded within an alcohol leaving group facilitates turnover.  相似文献   

13.
We report an unprecedented catalytic protocol for the enantioselective decarbonylative transformation of aryl aldehydes. In this process, the decarbonylation of aldehydes catalyzed by chiral iridium complexes enabled the formation of asymmetric C−C bonds through the formation of an aryl−iridium intermediate. The decarbonylative aryl addition to bicyclic alkenes was fluidly performed without a stoichiometric aryl−metal reagent, such as aryl boronic acid, with a cationic iridium complex generated in situ from Ir(cod)2(BArF4) and the sulfur-linked bis(phosphoramidite) ligand ((R,R)-S−Me−BIPAM). This reaction has broad functional group compatibility, and no waste is generated, except carbon monoxide.  相似文献   

14.
Transition metal catalysed C−H bond activation chemistry has emerged as an exciting and promising approach in organic synthesis. This allows us to synthesize a wider range of functional molecules and conjugated polymers in a more convenient and more atom economical way. The formation of C−C bonds in the construction of pi-conjugated systems, particularly for conjugated polymers, has benefited much from the advances in C−H bond activation chemistry. Compared to conventional transition-metal catalysed cross-coupling polymerization such as Suzuki and Stille cross-coupling, pre-functionalization of aromatic monomers, such as halogenation, borylation and stannylation, is no longer required for direct arylation polymerization (DArP), which involve C−H/C−X cross-coupling, and oxidative direct arylation polymerization (Ox-DArP), which involves C−H/C−H cross-coupling protocols driven by the activation of monomers’ C(sp2)−H bonds. Furthermore, poly(annulation) via C−H bond activation chemistry leads to the formation of unique pi-conjugated moieties as part of the polymeric backbone. This review thus summarises advances to date in the synthesis of conjugated polymers utilizing transition metal catalysed C−H bond activation chemistry. A variety of conjugated polymers via DArP including poly(thiophene), thieno[3,4-c]pyrrole-4,6-dione)-containing, fluorenyl-containing, benzothiadiazole-containing and diketopyrrolopyrrole-containing copolymers, were summarized. Conjugated polymers obtained through Ox-DArP were outlined and compared. Furthermore, poly(annulation) using transition metal catalysed C−H bond activation chemistry was also reviewed. In the last part of this review, difficulties and perspective to make use of transition metal catalysed C−H activation polymerization to prepare conjugated polymers were discussed and commented.  相似文献   

15.
Geminal cross couplings using multiple components enable the formation of several different bonds at one site in the building of tertiary and quaternary alkanes. Nevertheless, there are remaining issues of concern—cleavage of two geminal bonds and control of selectivity present challenges. We report here the geminal cross couplings of three components by reactions of dihaloalkanes with organomagnesium and chlorosilanes or alkyl tosylates by Cr catalysis, affording the formation of geminal C−C/C−Si or C−C/C−C bonds in the creation of tertiary and quaternary alkanes. The geminal couplings are catalyzed by low-cost CrCl2, enabling the sluggishness of competitive Kumada-type side couplings and homocouplings of Grignard reagents, in achieving high chemoselectivity. Experimental and theoretical studies indicate that two geminal C-halide bonds are continuously cleaved by Cr to afford a metal carbene intermediate, which couples with a Grignard reagent, followed by silylation, in the formation of geminal C−C and C−Si bonds via a novel inner-sphere radical coupling mechanism. These three-component geminal cross couplings are value-addition to the synthesis of commercial drugs and bioactive molecules in medicinal chemistry.  相似文献   

16.
Carbon-heteroatom bond formation under transition-metal free conditions provides a powerful synthetic alternative for the efficient synthesis of valuable molecules. In particular, C−N and C−O bonds are two important types of carbon-heteroatom bonds. Thus, continuous efforts have been deployed to develop novel C−N/C−O bond formation methodologies involving various catalysts or promoters under TM-free conditions, which enables the synthesis of various functional molecules comprising C−N/C−O bonds in a facile and sustainable manner. Considering the significance of C−N/C−O bond construction in organic synthesis and materials science, this review aims to comprehensively present selected examples on the construction of C−N (including amination and amidation) and C−O (including etherification and hydroxylation) bonds without transition metals. Besides, the involved promoters/catalysts, substrate scope, potential application and possible reaction mechanisms are also systematically discussed.  相似文献   

17.
Here we report a method to reorganize the core structure of aliphatic unsaturated nitrogen-containing substrates exploiting polyprotonation in superacid solutions. The superelectrophilic activation of N-isopropyl systems allows for the selective formal Csp3−H activation/cyclization or homologation / functionalization of nitrogen-containing substrates. This study also reveals that this skeletal reorganization can be controlled through protonation interplay. The mechanism of this process involves an original sequence of C−N bond cleavage, isopropyl cation generation and subsequent C−N bond and C−C bond formation. This was demonstrated through in situ NMR analysis and labelling experiments, also confirmed by DFT calculations.  相似文献   

18.
In the biosynthesis of the tryptophan-linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high-resolution crystal structure of selective Csp2−N bond forming dimerase, AspB. Overlay of the AspB structure onto C−C and C−N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C−N bond formation. MD simulations also suggest that intermolecular C−C or C−N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic.  相似文献   

19.
The direct, catalytic dehydrative substitution of alcohols is a challenging, yet highly desirable process in the development of more sustainable approaches to organic chemistry. This review outlines recent advances in Brønsted acid-catalysed dehydrative substitution reactions for C−C, C−O, C−N and C−S bond formation. The wide range of processes that are now accessible using simple alcohols as the formal electrophile are highlighted, while current limitations and therefore possible future directions for research are also discussed.  相似文献   

20.
Hydrothermal carbonization (HTC) of fructose and urea containing solutions was conducted at 180 °C to study the influence of nitrogen-containing compounds on the conversion process and HTC products properties. The concentration of fructose was fixed, while the concentration of urea was gradually increased to study its influence on the formation of nitrogen-containing hydrochar (N−HC). The degradation of urea has an important influence on the HTC of fructose. The Maillard reaction (MR) promotes the formation of N−HC in acidic conditions. However, in alkaline conditions, MR promotes the formation of bio-oil at the expense of N−HC. Alkaline conditions reduce N−HC yield by catalyzing fragmentation reactions of fructose and by promoting the isomerization of fructose to glucose. The results showed that adjusting the concentration of nitrogen-containing compounds or the pH value of the reaction environment is important to force the reaction toward the formation of N−HC or N-bio-oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号