首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of C−N bond formation reactions is highly desirable due to their importance in biology and chemistry. Recent progress in 3d metal catalysis is indicative of unique selectivity patterns that may permit solving challenges of chemical synthesis. We report here on a catalytic C−N bond formation reaction—the reductive alkylation of nitriles. Aldehydes or ketones and nitriles, all abundantly available and low-cost starting materials, undergo a reductive coupling to form secondary alkylamines and inexpensive hydrogen is used as the reducing agent. The reaction has a very broad scope and many functional groups, including hydrogenation-sensitive examples, are tolerated. We developed a novel cobalt catalyst, which is nanostructured, reusable, and easy to handle. The key seems the earth-abundant metal in combination with a porous support material, N-doped SiC, synthesized from acrylonitrile and a commercially available polycarbosilane.  相似文献   

2.
We report catalytic hydroboration of esters as well as nitriles under solvent-free and mild conditions using single titanium(IV) metal complex, [{κ2-C6H4C(O)N(iPr)C(N-iPr)=N}{κ3-(iPr)N=C(O)−C6H4−NC(NMe2)N(iPr)}TiNMe2] 1 as a sustainable, economical, and efficient pre-catalyst. The molecular structure of the TiIV complex in the solid state reveals the unique coordination of TiIV metal with N, N, and O atoms of one quinazolinone unit via in-situ rearrangement, while another quinazolinone moiety coordinates in bidentate fashion via both N atoms only. The TiIV complex demonstrates excellent activity as a pre-catalyst towards the hydroboration of a wide array of esters and nitriles with pinacolborane (HBpin) to afford alkoxyboranes and diboryl amines in high yield (up to 99 %) with greater tolerance to a variety of electron-withdrawing and electron-donating functional groups. A most plausible mechanism of hydroboration of esters is also proposed based on kinetics and NMR studies, which suggests the formation of titanium-hydride species as an active catalyst.  相似文献   

3.
韩波  张炯  焦海军  吴立朋 《催化学报》2021,42(11):2059-2067
发展温和条件下胺类化合物的高效合成方法是催化与合成领域长期研究的课题.其中,酰胺还原因其原料来源广、易于合成而广受关注.酰胺还原到胺需要选择性断裂C=O键,因此该反应具有很大的挑战性.传统酰胺还原方法需要使用当量的强还原试剂,如四氢铝锂、硼氢化钠等,且官能团兼容性较差.使用氢气还原原子经济性最高,也最有吸引力;然而,目前已报道的体系大都在高温(>120℃)或高压(>40 bar H2)的条件下进行.虽然催化硼氢化可以在温和的条件下将羰基化合物还原,但由于酰胺化合物惰性比较高,其选择性的催化硼氢化研究则相对较少,而且在温和条件下对三级、二级、一级酰胺都适用的例子依然非常有限.本文采用前过渡金属锆氢催化剂实现了室温条件下酰胺选择性硼氢化制备胺类化合物,并进行了详细的机理研究.原位红外监测到反应过程中酰胺和硼烷逐渐减少,目标产物逐渐增多;但并未给出其他反应中间体的信息.核磁研究以及对照实验结果表明,反应中有苯甲醛的生成,可能是反应中间体.因此推测,该催化体系经历了锆氢介导的酰胺C?N键断裂、重组、C?O键断裂这一特殊的酰胺键活化转化过程.DFT计算也证实了上述反应历程的可行性.除一些常见官能团外,本方法对羧酸酯、氰基、硝基、烯烃和炔烃这些可能被硼氢化的官能团同样具有兼容性.而且本文体系对一些生物、药物分子衍生酰胺的硼氢化也可以顺利进行.可见,本文发展了一种温和条件下使用廉价催化剂和原料选择性合成胺类化合物的方法.  相似文献   

4.
韩波  张炯  焦海军  吴立朋 《催化学报》2021,42(11):2059-2067
发展温和条件下胺类化合物的高效合成方法是催化与合成领域长期研究的课题.其中,酰胺还原因其原料来源广、易于合成而广受关注.酰胺还原到胺需要选择性断裂C=O键,因此该反应具有很大的挑战性.传统酰胺还原方法需要使用当量的强还原试剂,如四氢铝锂、硼氢化钠等,且官能团兼容性较差.使用氢气还原原子经济性最高,也最有吸引力;然而,目前已报道的体系大都在高温(>120℃)或高压(>40 bar H2)的条件下进行.虽然催化硼氢化可以在温和的条件下将羰基化合物还原,但由于酰胺化合物惰性比较高,其选择性的催化硼氢化研究则相对较少,而且在温和条件下对三级、二级、一级酰胺都适用的例子依然非常有限.本文采用前过渡金属锆氢催化剂实现了室温条件下酰胺选择性硼氢化制备胺类化合物,并进行了详细的机理研究.原位红外监测到反应过程中酰胺和硼烷逐渐减少,目标产物逐渐增多;但并未给出其他反应中间体的信息.核磁研究以及对照实验结果表明,反应中有苯甲醛的生成,可能是反应中间体.因此推测,该催化体系经历了锆氢介导的酰胺C?N键断裂、重组、C?O键断裂这一特殊的酰胺键活化转化过程.DFT计算也证实了上述反应历程的可行性.除一些常见官能团外,本方法对羧酸酯、氰基、硝基、烯烃和炔烃这些可能被硼氢化的官能团同样具有兼容性.而且本文体系对一些生物、药物分子衍生酰胺的硼氢化也可以顺利进行.可见,本文发展了一种温和条件下使用廉价催化剂和原料选择性合成胺类化合物的方法.  相似文献   

5.
The borylation of C−H bonds catalyzed by transition metals has been investigated extensively in the past two decades, but no iridium‐catalyzed enantioselective borylation of C−H bonds has been reported. We report a set of iridium‐catalyzed enantioselective borylations of aromatic C−H bonds. This reaction relies on a set of newly developed chiral quinolyl oxazoline ligands. This process proceeds under mild conditions with good to excellent enantioselectivity, and the borylated products can be converted to enantioenriched derivatives containing new C−O, C−C, C−Cl, or C−Br bonds.  相似文献   

6.
The borylation of C−H bonds catalyzed by transition metals has been investigated extensively in the past two decades, but no iridium-catalyzed enantioselective borylation of C−H bonds has been reported. We report a set of iridium-catalyzed enantioselective borylations of aromatic C−H bonds. This reaction relies on a set of newly developed chiral quinolyl oxazoline ligands. This process proceeds under mild conditions with good to excellent enantioselectivity, and the borylated products can be converted to enantioenriched derivatives containing new C−O, C−C, C−Cl, or C−Br bonds.  相似文献   

7.
N−O σ bonds containing compounds are versatile substrates for organic synthesis under transition metal catalysis. Their ability to react through both polar (oxidative addition, formation of metallanitrene, nucleophilic substitution) and radical pathways (single electron transfer, homolytic bond scission) have triggered the development of various synthetic methodologies, particularly toward synthesizing nitrogen-containing compounds. In this review, we discuss the different modes of activation of N−O bonds in the presence of transition metal catalysts, emphasizing the experimental and computational mechanistic proofs in the literature to help to design new synthetic pathways toward the synthesis of C−N bonds.  相似文献   

8.
咪唑、腈、酯类等极性有机物吸附在铜、铂、银、汞等过渡金属表面时,氮原子或氧原子上的孤对电子插入金属原子的外层价轨道,在表面生成零价态金属原子的配合物。由于电子的迁移,使金属原子及有机物中相应的化学键同时被活化。这一现象被作者称为"表面吸附层的配位双活化效应"。在有氧存在时,零价态金属原子极易与上述有机物发生化学反应,导致了N-H键、C≡N键或C-O键的破裂,生成超薄化学吸附层覆盖在金属表面。  相似文献   

9.
Homoallylic phosphine boranes undergo intramolecular hydroboration upon activation by triflic acid. The reaction occurs via an intermediate B-trifluorosulfonyloxyborane complex such as 15, followed by S(N)1-like or S(N)2-like displacement of the triflate leaving group, apparently leading to the formation of a four-center transition state. In the case of trisubstituted double bonds, as in the substrates 29 and 32, ionic hydrogenation of the alkene competes with internal hydroboration.  相似文献   

10.
Transition metal intermediates bearing M−X σ-bonds are ubiquitous in metal-mediated C−X bond transformations. Thermodynamic knowledge of M−X bond cleavage is crucial to explore relevant reactions; but little was accumulated till present due to lack of suitable determination methods. We here report the first systematic study of the Pd−X bond homolysis dissociation free energies [BDFE(Pd−X)] of representative [(tmeda)Pd(4-F−C6H4)X] (tmeda=N,N,N′,N′-tetramethylethylenediamine, X=OR or NHAr) in DMSO on the basis of reliable measurement of their bond heterolysis energies (ΔGhet(Pd−X)). Despite ΔGhet(Pd−O)s of palladium-phenoxides are generally found about 8 kcal/mol smaller than ΔGhet(Pd−N)s of palladium-amidos, their BDFE(Pd−X)s are observed comparable. The structure-property relationship was investigated to disclose an enhancement effect of electron-withdrawing groups on BDFE(Pd−X)s. Linear free energy relationship analysis revealed that Pd−X bonds are more sensitive than X−H bonds to structural variation. The energetic propensity of reductive elimination from arylpalladium complexes was evaluated by combinatorial use of BDFE(Pd−X)s and BDFE(C−X)s, indicating an overall thermodynamic bias to C−N bond formation.  相似文献   

11.
The direct catalytic esterification of amides that leads to the construction of C−O bonds through the cleavage of amide C−N bonds is a highly attractive strategy in organic synthesis. While aliphatic and aromatic alcohols can be readily used for the alcoholysis of activated and unactivated amides, the introduction of phenols is more challenging due to their lower nucleophilicity in the phenolysis of unactivated amides. Herein, we demonstrate that phenols can be used for the phenolysis of unactivated amides into the corresponding phenolic esters using a simple heterogenous catalytic system based on CeO2 under additive-free reaction conditions. The method tolerates a broad variety of functional groups (>50 examples) in the substrates. Results of kinetic studies afforded mechanistic insights into the principles governing this reaction, suggesting that the cooperative effects of the acid–base functions of catalysts would be of paramount importance for the efficient progression of the C−N bond breaking process, and consequently, CeO2 showed the best catalytic performance among the catalysts explored.  相似文献   

12.
Carbon-heteroatom bond formation under transition-metal free conditions provides a powerful synthetic alternative for the efficient synthesis of valuable molecules. In particular, C−N and C−O bonds are two important types of carbon-heteroatom bonds. Thus, continuous efforts have been deployed to develop novel C−N/C−O bond formation methodologies involving various catalysts or promoters under TM-free conditions, which enables the synthesis of various functional molecules comprising C−N/C−O bonds in a facile and sustainable manner. Considering the significance of C−N/C−O bond construction in organic synthesis and materials science, this review aims to comprehensively present selected examples on the construction of C−N (including amination and amidation) and C−O (including etherification and hydroxylation) bonds without transition metals. Besides, the involved promoters/catalysts, substrate scope, potential application and possible reaction mechanisms are also systematically discussed.  相似文献   

13.
过渡金属催化不饱和有机化合物的加氢反应具有原子经济性高、绿色环保等优点,一直是有机化学研究的重点和难点.当前加氢反应中最常用的催化剂主要是铑、钌、铱、钯等贵金属,以储量丰富的金属锰作为催化剂更符合可持续发展的要求,在过去的几年中,锰催化的醛、酮、酯、腈、酰胺等不饱和化合物的氢化反应得以实现.我们系统地总结了锰配合物在加...  相似文献   

14.
This review provides a comprehensive overview of strategies and methodologies for reducing C−O and heteroatomic−oxygen bonds (N−O, S−O, P−O) using I2/I, as well as other synthetically relevant bonds such as C−C, N−N, C−N, C−X, C−S. It highlights and discusses most of the mechanistic details provided by the original authors. Selected examples of other halides (Br and Cl) as reductants are also covered.  相似文献   

15.
The incorporation of heavy alkali metals into substrates is both challenging and essential for many reactions. Here, we report the formation of THF-solvated alkali metal benzyl compounds [PhCH2M ⋅ (thf)n] (M=Na, Rb, Cs). The synthesis was carried out by deprotonation of toluene with the bimetallic mixture n-butyllithium/alkali metal tert-butoxide and selective crystallization from THF of the defined benzyl compounds. Insights into the molecular structure in the solid as well as in solution state are gained by single crystal X-ray experiments and NMR spectroscopic studies. The compounds could be successfully used as alkali metal mediating reagents. The example of caesium showed the convenient use by deprotonating acidic C−H as well as N−H compounds to gain insight into the aminometalation using these reagents.  相似文献   

16.
Due to their strong covalent bonds and low reduction potentials, activating inert substrates is challenging. Recent advances in photoredox catalysis offered a number of solutions, each of which useful for activating specific inert bonds. Developing a general catalytic platform that can consistently target a broad range of inert substrates would be synthetically useful. Herein, we report a readily available indole thiolate organocatalyst that, upon excitation with 405 nm light, acquires a strongly reducing power. This excited-state reactivity served to activate, by single-electron reduction, strong C−F, C−Cl, and C−O bonds in both aromatic and aliphatic substrates. This catalytic platform was versatile enough to promote the reduction of generally recalcitrant electron-rich substrates (Ered<−3.0 V vs SCE), including arenes that afforded 1,4-cyclohexadienes. The protocol was also useful for the borylation and phosphorylation of inert substrates with a high functional group tolerance. Mechanistic studies identified an excited-state thiolate anion as responsible of the highly reducing reactivity.  相似文献   

17.
peri‐Disubstituted naphthalenes exhibit interesting physical properties and unique chemical reactivity, due to the parallel arrangement of the bonds to the two peri‐disposed substituents. Regioselective installation of a functional group at the position peri to 1‐substituted naphthalenes is challenging due to the steric interaction between the existing substituent and the position at which the second one would be installed. We report an iridium‐catalyzed borylation of the C−H bond peri to a silyl group in naphthalenes and analogous polyaromatic hydrocarbons. The reaction occurs under mild conditions with wide functional group tolerance. The silyl group and the boryl group in the resulting products are precursors to a range of functional groups bound to the naphthalene ring through C−C, C−O, C−N, C−Br and C−Cl bonds.  相似文献   

18.
Dinitrogen (N2) activation and functionalization is of fundamental interest and practical importance. This review focuses on N2 activation and addition to unsaturated substrates, including carbon monoxide, carbon dioxide, heteroallenes, aldehydes, ketones, acid halides, nitriles, alkynes, and allenes, mediated by transition metal complexes, which afforded a variety of N−C bond formation products. Emphases are placed on the reaction modes and mechanisms. We hope that this work would stimulate further explorations in this challenging field.  相似文献   

19.
通过C=X(X=O,N)双键极性翻转构筑碳-碳键是有机化学反应的重要合成策略.传统C=X(X=O,N)双键的极性翻转往往需要苛刻的反应条件和对水或空气敏感的强还原剂辅助,导致其适用范围受限.近年来,可见光催化反应以其独特高效的单电子转移特性,在室温条件下实现了这一类贫电子官能团向亲核性中间体的高效转化.该策略已经拓展C=X(X=O,N)双键自身或与烷基链的偶联,从而得到烷基取代的醇和胺类化合物.本文利用可见光催化反应使C=X(X=O,N)双键极性翻转与芳香化合物的直接偶联,高效温和地合成芳基取代的醇和胺.反应无需强还原剂,底物适用范围广.该方法是对可见光催化C=X(X=O,N)双键极性翻转的重要补充,具有潜在的应用价值.本文以苯甲醛和1,4-二氰基苯为底物,fac-Ir(ppy)_3为光敏剂,二异丙基乙胺为终端还原剂,DMSO为溶剂,蓝光照射12 h能够以82%的收率实现模板反应.其它光敏剂如[Ru(bpy)3]Cl_2则不能催化该反应.溶剂效应指出,丙酮、乙腈可以得到低于40%的收率,甲醇、二氯甲烷、DMF等溶剂不适用该反应体系.控制实验证实,光敏剂、二异丙基乙胺和光照三个反应组分缺一不可.底物拓展发现,不同取代基的芳基腈类化合物包括烷基取代、砜基和酯基取代甚至杂芳环取代都能很好地适用于该体系,芳基醛、酮以及亚胺作为反应的另一组分亦能高效参与该还原偶联反应.自由基捕获实验证实反应过程中涉及自由基历程.光谱淬灭实验表明,芳香腈是唯一有效淬灭激发态fac-Ir(ppy)_3发光的物种.进一步结合底物的氧化还原电位,证实芳香腈能被激发态的光敏剂fac-Ir(ppy)_3还原,但二异丙基乙胺和芳香醛、酮不能与激发态光敏剂发生作用,催化反应经历光敏剂的氧化淬灭路径.首先,光敏剂受光激发到达激发态,与芳基腈发生单电子转移.随后,二异丙基乙胺促使失去电子的铱配合物还原再生,得到相应氮自由基阳离子.该氮自由基阳离子活化反应体系中的C=X(X=O,N)双键,使其从激发态铱物种得到电子形成苄位自由基,进而与得到电子的芳基氰偶联得到最终产物.  相似文献   

20.
The past few decades have witnessed extensive efforts to disclose the unique reactivity of metal–nitrenes, because they could be a powerful synthetic tool for introducing the amine functionality into unactivated chemical bonds. The reactivity of metal–nitrenes, however, is currently mainly confined to aziridination (an insertion into a C=C bond) and C−H amination (an insertion into a C−H bond). Nitrene insertion into an amide C−N bond, however, has not been reported so far. In this work we have developed a rhodium-catalyzed one-nitrogen insertion into amide C−N and sulfonamide S−N bonds. Experimental and theoretical analyses based on density functional theory indicate that the formal amide insertion proceeds via a rhodium-coordinated ammonium ylide formed between the nitrene and the amide nitrogen, followed by acyl group transfer concomitant with C−N bond cleavage. Mechanistic studies have allowed rationalization of the origin of the chemoselectivity observed between the C−H and amide insertion reactions. The methodology presented herein is the first example of an insertion of nitrene into amide bonds and provides facile access to unique diazacyclic systems with an N−N bond linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号