首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific surface, S, of CSH-gel particles of disordered layered structure, was studied by water sorption/retention in two cement pastes differing in strength, i.e. C-33 (weaker) and C-43 (stronger), w/c=0.4. Hydration time in liquid phase was t h=1 and 6 months, followed by hydration in water vapour either on increasing stepwise the relative humidity, RH=0.5→0.95→1.0 (WS) or on its lowering in an inverse order (WR). Specific surface was estimated from evaporable (sorbed) water content, EV (110°C), assuming a bi- and three-molecular sorbed water layer at RH=0.5 or 0.95, respectively (WS). On WR it was three- and three- to four-molecular (50 to 75%), respectively, causing a hysteresis of sorption isotherm. At RH=0.5 the S increased with cement strength from 146 m2 g-1 (C-33, 1 m) to 166 m2 g-1 (C-43, 1 m) and with hydration time to 163 (C-33, 6 m) and to 204 m2 g-1 (C-43, 6 m). At RH=1.0 (and 0.95), higher S-value were measured but these differences were smaller: S amounted to 190-200 m2 g-1 in C-33 (1 and 6 m) and 198-210 m2 g-1 in C-43 (1 and 6 m). Thus no collapse occurred on air drying of paste C-43 (6 m). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Today, 44Sc is an attractive radionuclide for molecular imaging with PET. In this work, we evaluated a 44Ti/44Sc radionuclide generator based on TEVA resin as a source of 44Sc. The generator prototype (5 MBq) exhibits high 44Ti retention and stable yield of 44Sc (91 ± 6 %) in 1 mL of eluate (20 bed volumes, eluent—0.1 M oxalic acid/0.2 M HCl) during one year of monitoring (more than 120 elutions). The breakthrough of 44Ti did not exceed 1.5 × 10−5% (average value was 6.5 × 10−6%). Post-processing of the eluate for further use in radiopharmaceutical synthesis was proposed. The post-processing procedure using a combination of Presep® PolyChelate and TK221 resins made it possible to obtain 44Sc-radioconjugates with high labeling yield (≥95%) while using small precursor amounts (5 nmol). The proposed method takes no more than 15 min and provides ≥90% yield relative to the 44Sc activity eluted from the generator. The labeling efficiency was demonstrated on the example of [44Sc]Sc-PSMA-617 and [44Sc]Sc-PSMA-I&T synthesis. Some superiority of PSMA-I&T over PSMA-617 in terms of 44Sc labeling efficiency was demonstrated (likely due to presence of DOTAGA chelator in the precursor structure). It was also shown that microwave heating of the reaction mixture considerably shortened the reaction time and improved radiolabeling yield and reproducibility of [44Sc]Sc-PSMA-617 and [44Sc]Sc-PSMA-I&T synthesis.  相似文献   

3.
A simple method for the electrodeposition of elemental arsenic (As) on a metal backing from aqueous solutions has been developed. The method was successfully applied to stable As (75As). Thin (2.5 mg cm−2) coherent, smooth layers of the metalloid on Ti foils (2.5 μm thickness) were obtained. Electrodeposits served as targets for 75As(n,γ) 76As neutron capture experiments at Los Alamos Neutron Science Center (LANSCE). Respective 73As(n,γ) 74As experiments are planned for the near future, and 73As targets will be prepared in a similar fashion utilizing the new electrodeposition method. The preparation of an 73As (half-life 80.3 days) plating bath solution from proton irradiated germanium has been demonstrated. Germanium target irradiation was performed at the Los Alamos Isotope Production Facility (IPF).  相似文献   

4.
The lipophillic ammonium salt of 1‐pyrrolidine dicarbodithioic acid (PCDT) (I) was introduced as a new selective ionophore for an iron selective electrode. In addition, the effect of immobilization of 18‐crown‐6 (18CE6) (membrane type‐II), on the electrode performance was discussed. The slope of the PCDT‐based (I) electrode was (20 mV/decade). The linear concentration range was (10?5–10?1 M) after one day doping. The detection limit for electrode type‐(II) was (1.3×10?6 M). For membrane with only 18CE6 (type‐III) the linear range and the detection limit were improved (10?5–10?1 M and 3.2×10?6 M, respectively). The pH‐range was between 5–11 for type‐II, and III electrodes, while it was 7–11 for type‐I electrode. Most of the common cations were tested for the evaluation of the electrode selectivity with correlation to the ionic radii of the tested cations. Among them only Ag+ and Pb2+ were the real interference for type‐III electrode. Application of using the electrode for the determination of iron in lubrication oil samples was performed with RSD (1.77–2.7%) and (1.01–2.3%) for type‐II and III electrodes, respectively. The corresponding recovery ranges were (93.0–99.9%) and (96.3–100%). The obtained results were compared to those of an atomic absorption spectrophotometric method.  相似文献   

5.
Superoxide dismutase (SOD) plays an important role in nearly all living cells. In this study, SOD imprinted poly(ionic liquid)s (SIPILs) were prepared on the surface of the bare Au electrode modified with nano‐palladium and nano‐gold (Au/nPd/nAu/SIPILs). SIPILs was synthesized with 1‐vinyl‐3‐propyl imidazole sulfonate ionic liquids as functional monomers via electrochemically mediated atom transfer radical polymerization (eATRP) catalyzed by SOD. The Au/nPd/nAu/SIPILs was examined by cyclic voltammetry (CV), scanning electron microscope (SEM), energy‐dispersive spectrometer (EDS) and X‐ray photoelectron spectroscopy (XPS). The Au/nPd/nAu/SIPILs was also used as an electrochemical sensor to determine SOD by differential pulse voltammetry (DPV). Under the optimal conditions, the detection range of SOD was from 1.0×10?8 to 1.0×102 mg L?1 with a limit of detection of 8.90×10?9 mg L?1 (S/N=3). Compared with other methods, the sensor based on SIPILs had the broader linear range and lower detection limit.  相似文献   

6.
There is a growing interest in using biomonitoring of tooth and bone specimens to assess human exposure to manganese (Mn). Information on historical exposure to Mn can be obtained through micro-spatial analysis of such specimens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The principal aim of this study was to compare several calibration strategies for determining Mn content in tooth and bone by LA-ICP-MS including: (a) a six-point calibration curve based on synthesized hydroxyapatite (HA) materials, and single-point calibrations based on (b) NIST SRM 1400 Bone Ash, (c) NIST SRM 1486 Bone Meal, and (d) NIST SRM 612 Trace Elements in Glass. Performance was similar between different ICP-MS platforms (quadrupole ICP-MS, dynamic reaction cell ICP-MS, and sector field ICP-MS). Data based on calibration using the 55Mn count rate were compared to that based on using the 55Mn/43Ca count rate ratio to obtain results as the Mn mass fraction. Reasonable performance was obtained by calibration using either SRM 612 or SRM 1400, in combination with the 55Mn/43Ca count rate ratio and using either the synthesized HA standards or SRM 1400 as calibrators, combined with 55Mn count rate. By contrast, calibration based on SRM 1486 resulted in a systematic low bias. While there are several options for quantifying the Mn content of tooth and bone using LA-ICP-MS, users should be aware of the potential for strong matrix effects that may affect results. Overall, determining the 55Mn/43Ca count rate ratio, rather than the mass fraction, may represent a better approach for reporting the content of Mn in tooth and bone by LA-ICP-MS.  相似文献   

7.
In this paper, an electrochemical aptamer sensor was proposed for the highly sensitive detection of mercury ion (Hg2+). Carbon nanofiber (CNF) was prepared by electrospinning and high‐temperature carbonization, which was used for the loading of platinum nanoparticles (PtNPs) by the hydrothermal method. The Pt@CNF nanocomposite was modified on the surface of carbon ionic liquid electrode (CILE) to obtain Pt@CNF/CILE, which was further decorated by gold nanoparticles (AuNPs) through electrodeposition to get Au/Pt@CNF/CILE. Self‐assembling of the thiol‐based aptamer was further realized by the formation of Au‐S bond to get an electrochemical aptamer sensor (Aptamer/Au/Pt@CNF/CILE). Due to the specific binding of aptamer probe to Hg2+ with the formation of T‐Hg2+‐T structure, a highly sensitive quantitative detection of Hg2+ could be achieved by recording the changes of current signal after reacting with Hg2+ within the concentration range from 1.0 × 10?15 mol/L to 1.0 × 10?6 mol/L and the detection limit of 3.33 × 10?16 mol/L (3σ). Real water samples were successfully analyzed by this method.  相似文献   

8.
A novel series of pyrimidine/pyrazole linked β‐lactams have been synthesized in excellent yields using a simple and efficient methodology involving conjunction of different heterocyclic substrates. All the new products were characterized on the basis of various spectroscopic techniques viz. FT‐IR, 1H NMR, 13C NMR, elemental analysis (CHN), 1H‐1H correlation spectroscopy (1H‐1H COSY) and mass spectrometry (EIMS) in representative cases. Furthermore, theoretical calculations have also been performed on representative compounds and the results were compared with Cefuroxime axetil (a broad spectrum antibacterial agent). The phenomenon of tautomerism was also observed which was confirmed by different NMR experiments (D2O exchange study and 1H‐1H correlation spectroscopy).  相似文献   

9.
Carbon monoxide adsorbed species on Ru/silicalite and their reactivity towards oxygen have been studied using in situ diffuse reflectance infrared spectroscopy (DRIFT). Four species were detected: a bridge bonded CO on metallic Ru (1980 cm -1), a linearly adsorbed CO on metallic Ru (2040 cm-1), a linearly adsorbed CO on partially oxidized Ru (2081 cm-1), and a multicarbonyl on oxidized Ru (2081 and 2133 cm-1). Among the four CO species the most strongly held species was the bridge bonded CO on metallic Ru while the multicarbonyl was the most weakly held species. These four species have different reactivities towards oxygen. Only the linearly adsorbed CO on metallic Ru can be oxidized at room temperature.  相似文献   

10.
《Comptes Rendus Chimie》2015,18(10):1183-1191
The level of contamination by mercury associated with airborne particulate matter in Krakow was determined. Samples of PM10 were collected on quartz filters using low-volume samplers. The total particulate mercury (TPM) concentrations in collected samples were determined by mercury analyser MA-3000 (Nippon Instruments Corporation). The reported results include also data on the carbonaceous aerosol and inorganic ions concentrations during the reported sampling campaign. The average concentration of the Total Particulate Mercury (TPM) in Krakow (Poland) was 0.22 ng·m−3 (during the period from 22 February to 2 March) and 0.49 ng·m−3 (on 3 March). A marked correlation between TPM and elemental carbon (EC) as well as with Cl was found. No significant association of the TPM with NO3 and SO42– could be shown. The dry deposition flux of mercury was calculated as an average over the sampling period and was 47.3 ng·m−2·d−1.  相似文献   

11.
A procedure for measuring trace amounts of Li and Be in different types of samples has been studied using a 12.5 MeV14N beam. At this energy the principal nuclear reactions are6Li(14N, d)18F,7Li(14N, t)18F, and9Be(14N, αn)18F. Detection limit for destructive analysis for either beryllium or lithium has been calculated at 300 ppb with a determination limit of 5 ppm for an irradiation with a beam of 1 μA·h/cm2. Destructive analysis was performed on CANMET SY-2 and USGS BCR-1 (rock samples 1–10 ppm Be). Non-destructive analysis for beryllium and lithium was performed on NBS SRM 610 (500 ppm trace element glass), NBS 612 (50 ppm trace element glass), and NBS SRM 181 (Spodumene ore, 6.4% Li2O). Detection limit of 2 ppm has been calculated for nondestructive analysis of either lithium or beryllium.  相似文献   

12.
The photoinitiated oxidation of β-NADH catalyzed by horseradish peroxidase (Per3+) was studied by time-resolved photoinitiated chemically induced dynamic nuclear polarization (CIDNP). The polarization observed on protons at the C(4) atom of the β-NADH molecule is evidence for the reversible one-electron transfer between the radical cation NADH and the ferroperoxidase intermediate (Per2+). A new approach based on electron transitions in the (NADH Per2+) pair was proposed to describe the formation of CIDNP effects in systems including quartet (Q)—doublet (D) electron transitions. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1090–1094, July, 2006.  相似文献   

13.
Studies are reported to illustrate surface adsorption of144Ce,59Fe,234Th,233U,237Np,239Pu and241Am on a dextran gel made by crosslinkage of the polysaccharide dextran (Sephadex). Fixation of such elements was studied from aqueous solution and was found to depend on pH, age of the tracer solution, hydrolytic behaviour of the adsorbed species, concentration and the valency of the adsorbed element.  相似文献   

14.
In our study, the single‐use & eco‐friendly electrochemical sensor platform based on herbal silver nanoparticles (AgNPs) was developed for detection of mercury (II) ion (Hg2+). For this purpose, the surface of pencil graphite electrode (PGE) was modified with AgNPs and folic acid (FA), respectively. The concentrations of AgNPs and FA were firstly optimized by differential pulse voltammetry (DPV) to obtain an effective surface modification of PGE. Each step at the surface modification process was characterized by using cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS). The limit of detection (LOD) for Hg2+ was estimated and found to be 8.43 μM by CV technique. The sensor presented an excellent selectivity for Hg2+ against to other heavy metal ions such as Ca2+, Cd2+, Cr3+, Cu2+, Mg2+, Ni2+, Pb2+, Zn2+, Co2+ and Mn2+. Moreover, a rapid, selective and sensitive detection of Hg2+ was successfully performed in the samples of tap water within 1 min.  相似文献   

15.
A novel push-pull oligomeric semiconductor, ENBT based on naphthodithiophene-benzothiodiazole was successfully designed and synthesized. ENBT was fully characterized by 1H NMR, MS, thermogravimetric analysis (TGA), UV–vis spectra, and cyclic voltammetry (CV). Furthermore, ENBT-based OFETs were fabricated by solution-processed dip-coating technique and its charge transporting property was investigated. The film of ENBT exhibited a hole mobility as high as 1.4?×?10?2?cm2/(Vs) with a current on/off ratio of 106–107 after annealed at 160?°C. In order to give an insight to the transporting property of ENBT films, thin film morphologies after annealing at different temperatures were also studied by atomic force microscopy (AFM).  相似文献   

16.
We are reporting the highly sensitive determination of hydroxylamine (HA) using 2-mercapto-4-methyl-5-thiazoleacetic acid (TAA) capped fused spherical gold nanoparticles (AuNPs) modified Au electrode. The fused TAA-AuNPs were immobilized on (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film, which was pre-assembled on Au electrode. The immobilization of fused TAA-AuNPs on MPTS sol-gel film was confirmed by UV-vis absorption spectroscopy and atomic force microscopy (AFM). The AFM image showed that the AuNPs retained the fused spherical morphology after immobilized on sol-gel film. The fused TAA-AuNPs on MPTS modified Au electrode were used for the determination of HA in phosphate buffer (PB) solution (pH = 7.2). When compared to bare Au electrode, the fused AuNPs modified electrode not only shifted the oxidation potential of HA towards less positive potential but also enhanced its oxidation peak current. Further, the oxidation of HA was highly stable at fused AuNPs modified electrode. Using amperometric method, determination of 17.5 nM HA was achieved for the first time. Further, the current response of HA increases linearly while increasing its concentration from 17.5 nM to 22 mM and a detection limit was found to be 0.39 nM (S/N = 3). The present modified electrode was also successfully used for the determination of 17.5 nM HA in the presence of 200-fold excess of common interferents such as urea, NO2, NH4+, oxalate, Mn2+, Na+, K+, Mg2+, Ca2+, Ba2+ and Cu2+. The practical application of the present modified electrode was demonstrated by measuring the concentration of HA in ground water samples.  相似文献   

17.
A simple, rapid and a highly selective method for direct electrochemical determination of acebutolol hydrochloride (AC) was developed. The developed method was based on the construction of three types of sensors conventional polymer (I), carbon paste (II) and modified carbon nanotubes (MCNTs) carbon paste (III). The fabricated sensors depend mainly on the incorporation of acebutolol hydrochloride with phosphotungstic acid (PTA) forming ion exchange acebutolol‐phosphotungstate (AC‐PT). The performance characteristics of the proposed sensors were studied. The sensors exhibited Nernstian responses (55.6 ± 0.5, 57.14 ± 0.2 and 58.6 ± 0.4 mV mol L?1) at 25 °C over drug concentration ranges (1.0 × 10?6‐1.0 × 10?2, 1.0 × 10?7‐1.0 × 10?2 and 5.0 × 10?8‐1.0 × 10?2 mol L?1 with lower detection limits of (5.0 × 10?7, 5.0 × 10?8 and 2.5 × 10?8 mol L?1 for sensors (I), (II) and (III), respectively. The influence of common and possible interfering species, pharmaceutical additives and some related pharmacological action drugs was investigated using separate solution method and no interference was found. The stability indicating using forced degradation of acebutolol hydrochloride was studied. The standard addition method was used for determination of the investigated drug in its pharmaceutical dosage forms and biological fluids. The results were validated and statistically analysed and compared with those from previously reported methods.  相似文献   

18.
The determination of arsenic (75As) was studied using an ICP-MS equipped with collision cell technology (CCT). Different mixtures of gases (He and H2) were tested using HCl conditions and a He flow rate of 4 mL min−1 was found to be suitable for the removal of the poly-atomic spectral interference [40Ar35Cl]+. Trueness of the optimised method has been evaluated in both standard and CCT modes on six certified reference materials in foodstuffs of animal origin and on three external proficiency testing schemes (FAPAS). The results obtained generally coincided with the certified values, except for CCT mode in some categories of samples (meat, mussels and milk powder), for which a positive bias on results was observed due to the formation of poly-atomic interferences within the collision cell. The main interferences were studied and their contributions estimated. [58Fe16O1H]+ and [74Ge1H]+ were the most significant interferences formed in the cell. Finally, different parameters (e.g. hexapole and quadrupole bias voltage, nebuliser gas flow) were optimised to try to attenuate these interferences.  相似文献   

19.
In the absence of any special luminescence reagent, emission of weak chemiluminescence has been observed during the decomposition of hydrogen peroxide catalyzed by copper(II) in basic aqueous solution. The intensity of the chemiluminescence was greatly enhanced by addition of DNA and was strongly dependent on DNA concentration. Based on these phenomena, a flow-injection chemiluminescence method was established for determination of DNA. The chemiluminescence intensity was linear with DNA concentration in the range 2×10–7–1×10–5 g L–1 and the detection limit was 4.1×10–8 g L–1 (S/N=3). The relative standard deviation was less than 3.0% for 4×10–7 g L–1 DNA (n=11). The proposed method was satisfactorily applied for determination of DNA in synthetic samples. The possible mechanism of the CL reaction is discussed.  相似文献   

20.
Metal organic frameworks (MOFs) have attracted extensive attention in electrochemical research fields due to their high surface area and controlled porosity. Current study is design to investigate the ECL performance of the chemically modified electrode (CME) based on the bio-MOF-1, a porous zinc-adenine framework, which loaded ruthenium complex and employed for the detection of dopamine (DA). The composite material [Ru(bpy)3]2+@bio-MOF-1 (Ru-bMOF) modified carbon glassy electrode (Ru-bMOF/GCE) exhibited an excellent ECL performance having a linear co-efficient response (R2=0.9968) for 2-(dibutyl amino) ethanol (DBAE), a classical ECL co-reactant was obtained over a concentration range of 1.0×10−9 M to 1.0×10−4 M in 0.10 M pH=6.0 phosphate buffer solution (PBS). Furthermore, DA was detected based on its inhibition effect on [Ru(bpy)3]2+/DBAE system. Compared to traditional analytical methods, this method has various advantages such as simple electrode preparation, quick response, high reproducibility (RSD<2.0 %), low limit of detection (LOD=1.0×10−10 mol/L). This chemical investigated modified electrode had exploited potential for detection of DA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号