共查询到20条相似文献,搜索用时 15 毫秒
1.
First-principles calculations are applied for investigating influence of electron donating ability of donor groups in eight thermally activated delayed fluorescence (TADF) molecules on their geometrical structures and transition properties as well as reverse intersystem crossing (RISC) processes. Results show that the diphenylamine substitution in the donor part can slightly change the bond angle but decrease bond length between donor and acceptor unit except for the lowest triplet state (Tbegin{document}$_1$end{document} ) of carbazole-xanthone molecule. As the electron donating ability of donor groups is increased, the overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is decreased. As the diphenylamine groups are added in donor part, the delocalization of HOMO is enlarged, which brings a decreased energy gap (begin{document}$Delta E$end{document} begin{document}$_{text{S}_1text{-T}_1}$end{document} ) between the lowest singlet excited state (Sbegin{document}$_1$end{document} ) and Tbegin{document}$_1$end{document} state. Furthermore, with the calculated spin-orbit coupling coefficient (begin{document}$H_{text{so}}$end{document} ), one finds that the larger value of begin{document}$displaystyle{frac{langle S_1|hat{H}_{text{so}}|{T}_1rangle^2}{Delta E_{text{S}_1text{-T}_1}^2}}$end{document} is, the faster the RISC is. The results show that all investigated molecules are promising candidates as TADF molecules. Overall, a wise molecular design strategy for TADF molecules, in which a small begin{document}$Delta E_{text{S}_1text{-T}_1}$end{document} can be achieved by enlarging the delocalization of frontier molecular orbitals with large separation between HOMO and LUMO, is proposed. 相似文献
2.
In the field of organic light-emitting diodes, thermally activated delayed fluorescence (TADF) materials have achieved great performance. The key factor for this performance is the small energy gap (ΔEST) between the lowest triplet (T1) and singlet excited (S1) states, which can be realized in a well-separated donor-acceptor system. Such systems are likely to possess similar charge transfer (CT)-type T1 and S1 states. Recent investigations have suggested that the intervention of other type-states, such as locally excited triplet state(s), is necessary for efficient reverse intersystem crossing (RISC). Here, we theoretically and experimentally demonstrate that our blue TADF material exhibits efficient RISC even between singlet CT and triplet CT states without any additional states. The key factor is dynamic flexibility of the torsion angle between the donor and acceptor, which enhances spin-orbit coupling even between the charge transfer-type T1 and S1 states, without sacrificing the small ΔEST. This results in excellent photoluminescence and electroluminescence performances in all the host materials we investigate, with sky-blue to deep-blue emissions. Among the hosts investigated, the deepest blue emission with CIE coordinates of (0.15, 0.16) and the highest EQEMAX of 23.9 % are achieved simultaneously. 相似文献
3.
Zhonghao Zhou Chan Qiao Dr. Kang Wang Lu Wang Jie Liang Prof. Qian Peng Zhiyou Wei Dr. Haiyun Dong Prof. Chuang Zhang Prof. Zhigang Shuai Prof. Yongli Yan Prof. Yong Sheng Zhao 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(48):21861-21866
Thermally activated delayed-fluorescent (TADF) materials are anticipated to overcome triplet-related losses towards electrically driven organic lasers. Thus far, contributions from triplets to lasing have not yet been experimentally demonstrated owing to the limited knowledge about the excited-state processes. Herein, we experimentally achieve reverse intersystem crossing (RISC)-boosted lasing in organic microspheres with uniformly dispersed TADF emitters. In these materials, triplets are continuously converted to radiative singlets through RISC, giving rise to reduced losses in stimulated emission. The involvement of regenerated singlets in population inversion results in a thermally activated lasing; that is, the lasing intensity increases with increasing temperature, accompanied by accelerated depletion of the excited-state population. Benefiting from the suppression of triplet accumulations by RISC processes, a high-repetition-rate microlaser was achieved. 相似文献
4.
The Importance of Vibronic Coupling for Efficient Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence Molecules 下载免费PDF全文
Factors influencing the rate of reverse intersystem crossing (krISC) in thermally activated delayed fluorescence (TADF) emitters are critical for improving the efficiency and performance of third‐generation heavy‐metal‐free organic light‐emitting diodes (OLEDs). However, present understanding of the TADF mechanism does not extend far beyond a thermal equilibrium between the lowest singlet and triplet states and consequently research has focused almost exclusively on the energy gap between these two states. Herein, we use a model spin‐vibronic Hamiltonian to reveal the crucial role of non‐Born‐Oppenheimer effects in determining krISC. We demonstrate that vibronic (nonadiabatic) coupling between the lowest local excitation triplet (3LE) and lowest charge transfer triplet (3CT) opens the possibility for significant second‐order coupling effects and increases krISC by about four orders of magnitude. Crucially, these simulations reveal the dynamical mechanism for highly efficient TADF and opens design routes that go beyond the Born‐Oppenheimer approximation for the future development of high‐performing systems. 相似文献
5.
Robert Smit Dr. Zoran Ristanović Prof. Bolesław Kozankiewicz Prof. Michel Orrit 《Chemphyschem》2022,23(2):e202100679
Intersystem crossing to the long-lived metastable triplet state is often a strong limitation on fluorescence brightness of single molecules, particularly for perylene in various matrices. In this paper, we report on a strong excitation-induced reverse intersystem crossing (rISC), a process where single perylene molecules in a dibenzothiophene matrix recover faster from the triplet state, turning into bright emitters at saturated excitation powers. With a detailed study of single-molecule fluorescence autocorrelations, we quantify the effect of rISC. The intrinsic lifetimes found for the two effective triplet states (8.5±0.4 ms and 64±12 ms) become significantly shorter, into the sub-millisecond range, as the excitation power increases and fluorescence brightness is ultimately enhanced at least fourfold. Our results are relevant for the understanding of triplet state manipulation of single-molecule quantum emitters and for markedly improving their brightness. 相似文献
6.
Dongyi Liu Dr. Ahmed M. El-Zohry Maria Taddei Clemens Matt Laura Bussotti Dr. Zhijia Wang Prof. Jianzhang Zhao Prof. Omar F. Mohammed Prof. Mariangela Di Donato Prof. Stefan Weber 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(28):11688-11696
We prepared conceptually novel, fully rigid, spiro compact electron donor (Rhodamine B, lactam form, RB)/acceptor (naphthalimide; NI) orthogonal dyad to attain the long-lived triplet charge-transfer (3CT) state, based on the electron spin control using spin-orbit charge transfer intersystem crossing (SOCT-ISC). Transient absorption (TA) spectra indicate the first charge separation (CS) takes place within 2.5 ps, subsequent SOCT-ISC takes 8 ns to produce the 3NI* state. Then the slow secondary CS (125 ns) gives the long-lived 3CT state (0.94 μs in deaerated n-hexane) with high energy level (ca. 2.12 eV). The cascade photophysical processes of the dyad upon photoexcitation are summarized as 1NI*→1CT→3NI*→3CT. With time-resolved electron paramagnetic resonance (TREPR) spectra, an EEEAAA electron-spin polarization pattern was observed for the naphthalimide-localized triplet state. Our spiro compact dyad structure and the electron spin-control approach is different to previous methods for which invoking transition-metal coordination or chromophores with intrinsic ISC ability is mandatory. 相似文献
7.
A symmetrical host material, 2,7-di(9,9-dimethyl-9H-fluoren-1-yl)-9H-thioxanthen-9-one (DMBFTX), with TADF property was firstly developed. The red phosphorescent OLED based on this TADF host displays a lower EQEs rolloff of 38.8% at a luminance of 10 000 cd/m2 as compared to 71.2% of commercial mCP host, which is resulted from the upconversion of DMBFTX from triplet to singlet. 相似文献
8.
The redox behaviour of azobenzene compounds with donor-acceptor——p-nitro-p-N,p-dimethylazobenzene and p-nitro-p-hydroxylazobenzene was investigated by electrochemical method, and the mechanism of the electrode reaction was studied in detail. The results indicate that the oxidation of donor is related to the reduation of acceptor, and both compounds have the property of redox switch to some extent. 相似文献
9.
Dongyi Liu Ahmed M. El‐Zohry Maria Taddei Clemens Matt Laura Bussotti Zhijia Wang Jianzhang Zhao Omar F. Mohammed Mariangela Di Donato Stefan Weber 《Angewandte Chemie (International ed. in English)》2020,59(28):11591-11599
We prepared conceptually novel, fully rigid, spiro compact electron donor (Rhodamine B, lactam form, RB)/acceptor (naphthalimide; NI) orthogonal dyad to attain the long‐lived triplet charge‐transfer (3CT) state, based on the electron spin control using spin‐orbit charge transfer intersystem crossing (SOCT‐ISC). Transient absorption (TA) spectra indicate the first charge separation (CS) takes place within 2.5 ps, subsequent SOCT‐ISC takes 8 ns to produce the 3NI* state. Then the slow secondary CS (125 ns) gives the long‐lived 3CT state (0.94 μs in deaerated n‐hexane) with high energy level (ca. 2.12 eV). The cascade photophysical processes of the dyad upon photoexcitation are summarized as 1NI*→1CT→3NI*→3CT. With time‐resolved electron paramagnetic resonance (TREPR) spectra, an EEEAAA electron‐spin polarization pattern was observed for the naphthalimide‐localized triplet state. Our spiro compact dyad structure and the electron spin‐control approach is different to previous methods for which invoking transition‐metal coordination or chromophores with intrinsic ISC ability is mandatory. 相似文献
10.
Dr. Kepeng Chen Ivan V. Kurganskii Xue Zhang Prof. Ayhan Elmali Prof. Jianzhang Zhao Dr. Ahmet Karatay Prof. Matvey V. Fedin 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(27):7572-7587
Anthracene-naphthalimide (An-NI) compact electron donor-acceptor dyads were prepared, in which the orientation and distance between the two subunits were varied by direct connection or with intervening phenyl linker. Efficient intersystem crossing (ISC) and long triplet state lifetime (ΦΔ=92 %, τT=438 μs) were observed for the directly connected dyads showing a perpendicular geometry (81°). This efficient spin-orbit charge transfer ISC (SOCT-ISC) takes 376 fs, inhibits the direct charge recombination (CR) to ground state (1CT→S0, takes 3.04 ns). Interestingly, efficient SOCT-ISC for dyads with intervening phenyl linker (ΦΔ=40 % in DCM) was also observed, although the electron donor and acceptor adopt almost coplanar geometry (dihedral angle: 15°). Time-resolved electron paramagnetic resonance (TREPR) spectroscopy shows that the electron spin polarization of the triplet state, i. e. the electron spin selectivity of ISC, is highly dependent on the dihedral angle and the linker. For the dyads showing weaker coupling between the donor and acceptors, the charge separation and the intramolecular triplet energy transfer are inhibited at 80 K (frozen solution), because both the 3An and 3NI states were observed and the ESP are same as compared to the native anthracene and naphthalimide, which unravel their origin. The dyads were used as triplet photosensitizers for triplet−triplet annihilation upconversion (TTA UC). High UC quantum yield (ΦUC=12.9 %) as well as a large anti-Stokes shift (0.72 eV) was attained by excitation into the CT absorption band. 相似文献
11.
Zongren Li Tao Wang Dong Xu Jie Zuo Xinyu Li Zhiwei Li Fei Xu Xingyuan Zhang 《化学:亚洲杂志》2019,14(13):2302-2308
Here, we designed several waterborne polyurethanes (WPUs) with efficient thermally activated delayed fluorescence (TADF) via serving charge‐transfer (CT) states as a mediate bridge between singlet and triplet states to boost reverse intersystem crossing (RISC). By tuning substituents of diphenyl sulfone (DS), we found that O,O′‐ and S,S′‐substituted DS covalently incorporated in WPUs solely show typical fluorescence emission with lifetimes in the nanosecond range. Interestingly, TADF appears by replacing the substituent with the nitrogen atom, of which lifetimes are up to ≈10 microseconds and ≈1 millisecond in air and vacuum, respectively, even though the energy gap between singlet and triplet states (ΔEST) is still large for generating TADF. To explain this phenomenon, an energy level mode based on CT states and an 3(n‐π*) receiver state was proposed. By the rational modulation of CT states, it is possible to tune the ΔEST to render TADF‐based materials suitable for versatile applications. 相似文献
12.
Xue Zhang Xiao Liu Dr. Maria Taddei Laura Bussotti Ivan Kurganskii Minjie Li Dr. Xiao Jiang Longjiang Xing Prof. Shaomin Ji Prof. Yanping Huo Prof. Jianzhang Zhao Prof. Mariangela Di Donato Prof. Yan Wan Prof. Zujin Zhao Prof. Matvey V. Fedin 《Chemistry (Weinheim an der Bergstrasse, Germany)》2022,28(37):e202200510
We prepared an orthogonal compact electron-donor (phenoxazine, PXZ)-acceptor (naphthalimide, NI) dyad ( NI-PXZ ), to study the photophysics of the thermally-activated delayed fluorescence (TADF), which has a luminescence lifetime of 16.4 ns (99.2 %)/17.0 μs (0.80 %). A weak charge transfer (CT) absorption band was observed for the dyad, indicating non-negligible electronic coupling between the donor and acceptor at the ground state. Femtosecond transient absorption spectroscopy shows a fast charge separation (CS) (ca. 2.02∼2.72 ps), the majority of the singlet CS state is short-lived, especially in polar solvents (τCR = 10.3 ps in acetonitrile, vs. 1.83 ns in toluene, 7.81 ns in n-hexane). Nanosecond transient absorption spectroscopy detects a long-lived transient species in n-hexane, which is with a mixed triplet local excited state (3LE) and charge separated state (3CS), the lifetime is 15.4 μs. In polar solvents, such as tetrahydrofuran and acetonitrile, a neat 3CS state was observed, whose lifetimes are 226 ns and 142 ns, respectively. Time-resolved electron paramagnetic resonance (TREPR) spectra indicate the existence of strongly spin exchanged 3LE/3CT states, with the effective zero field splitting (ZFS) |D| and |E| parameters of 1484 MHz and 109 MHz, respectively, much smaller than that of the native 3NI state (2475 and 135 MHz). It is rare but solid experimental evidence that a closely-lying 3LE state is crucial for occurrence of TADF and this 3LE state is an essential intermediate state to facilitate reverse intersystem crossing in TADF systems. 相似文献
13.
本文设计合成了一种新型电子受体2,2-二甲基-1,3-茚二酮,并将其应用于热激活延迟荧光(TADF)分子的设计中,合成了一系列具有不同发光性能的TADF分子:5-二甲基吖啶基-2,2-二甲基-1,3-茚二酮(IDYD),5-吩噁嗪基-2,2-二甲基-1,3-茚二酮(IDPXZ)和5,6-二吩噁嗪基-2,2-二甲基-1,3-茚二酮(ID2PXZ)。以IDYD为客体掺杂制备得到蓝光OLED器件,其CIE值为(0.27,0.31),最大外量子效率(EQE)为2.13%。以IDPXZ为客体掺杂得到橙光OLED器件,其CIE值为(0.43,0.53),EQE为1.31%。以ID2PXZ为客体掺杂得到黄光OLED器件,其CIE值为(0.41,0.54),EQE为2.55%。上述结果证明了以2,2-二甲基-1,3-茚二酮为电子受体可以得到不同发光颜色的TADF分子,并在全色OLED器件中具有一定应用前景。 相似文献
14.
Giorgio Volpi Claudio Garino Dr. Luca Salassa Dr. Jan Fiedler Kenneth I. Hardcastle Prof. Roberto Gobetto Prof. Carlo Nervi Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(26):6415-6427
Luminescent ligands in IrIII cyclometalated complexes. The photophysical and photochemical properties of Ir‐cyclometalated complexes containing luminescent ligands are evaluated (see figure). Significant admixture between Ir and ligand orbitals induces an efficient intersystem crossing. Photochemical reactions performed in the presence of oxygen lead to new Ir‐cyclometalated complexes containing N(amido) groups directly bound to Ir.
15.
采用TD-DFT的最优Hartree-Fock(HF)交换方法, 计算以1,8-萘酰亚胺为受体(A), 9,9-二甲基-9,10-二氢吖啶、吩噁嗪等为给体(D)构建的12种分子内电荷转移化合物的最低激发单重态和最低激发三重态的能级差(ΔEST), 并探寻降低ΔEST的方法. 结果表明: D-A型分子比相应的D-苯桥-A型分子具有更低的ΔEST. 增加D与A间的扭曲二面角(空间位阻)和提高D的给电子能力能够有效地降低D-A型分子的ΔEST. 计算发现4-(9,9-二甲基-9,10-二氢吖啶)-N-苯基-1,8-萘酰亚胺(4b)和4-(吩噁嗪)-N-苯基-1,8-萘酰亚胺(5b)的ΔEST分别为0.01和0.02 eV, 它们的起始荧光波长分别为575 nm和621 nm, 垂直激发的振子强度分别是0.0002和0.0025. 这两种化合物有望成为发橙红光和红光的热激活延迟荧光材料. 相似文献
16.
17.
Jun Hu Yufei Chang Fan Chen Qingqing Yang Shiyang Shao Lixiang Wang 《Journal of polymer science. Part A, Polymer chemistry》2022,60(12):1855-1863
Two kinds of polystyrene-based through-space charge transfer (TSCT) polymers consisting of spatially-separated acridan donor moieties bearing phenyl or naphthyl substituents and triazine acceptor moieties are designed and synthesized. It is found that TSCT polymers containing phenyl-substituted acridan donors exhibit high-lying singlet (S1) and triplet (T1) states with small singlet-triplet energy splitting (∆EST) of 0.04–0.05 eV, resulting in thermally activated delayed fluorescence (TADF) with reverse intersystem crossing rate constants of 1.1–1.2 × 106 s−1. In contrast, polymers bearing naphthyl-substituted acridan donors, although still having TSCT emission, exhibit no TADF effect because of the large ∆EST of 0.30–0.33 eV induced by low-lying locally excited T1 state of naphthyl donor moiety. Solution-processed organic light-emitting diodes using TSCT polymers containing phenyl-substituted acridan donors reveal sky-blue emission at 483 nm together with maximum external quantum efficiency (EQE) of 11.3%, which is about 30 times that of naphthyl-substituted counterpart with maximum EQE of 0.38%, shedding light on the importance of high triplet energy level of donor moiety on realizing TADF effect and high device efficiency for through-space charge transfer polymer. 相似文献
18.
Jia-Ming Jin Dr. Denghui Liu Prof. Wen-Cheng Chen Chengxiang Shi Guowei Chen Xiaofeng Wang Longjiang Xing Weidong Ying Prof. Shaomin Ji Prof. Yanping Huo Shi-Jian Su 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2024,136(16):e202401120
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials hold great promise for advanced high-resolution organic light-emitting diode (OLED) displays. However, persistent challenges, such as severe aggregation-caused quenching (ACQ) and slow spin-flip, hinder their optimal performance. We propose a synergetic steric-hindrance and excited-state modulation strategy for MR-TADF emitters, which is demonstrated by two blue MR-TADF emitters, IDAD-BNCz and TIDAD-BNCz , bearing sterically demanding 8,8-diphenyl-8H-indolo[3,2,1-de]acridine (IDAD) and 3,6-di-tert-butyl-8,8-diphenyl-8H-indolo[3,2,1-de]acridine (TIDAD), respectively. These rigid and bulky IDAD/TIDAD moieties, with appropriate electron-donating capabilities, not only effectively mitigate ACQ, ensuring efficient luminescence across a broad range of dopant concentrations, but also induce high-lying charge-transfer excited states that facilitate triplet-to-singlet spin-flip without causing undesired emission redshift or spectral broadening. Consequently, implementation of a high doping level of IDAD-BNCz resulted in highly efficient narrowband electroluminescence, featuring a remarkable full-width at half-maximum of 34 nm and record-setting external quantum efficiencies of 34.3 % and 31.8 % at maximum and 100 cd m−2, respectively. The combined steric and electronic effects arising from the steric-hindered donor introduction offer a compelling molecular design strategy to overcome critical challenges in MR-TADF emitters. 相似文献
19.
The E/Z isomerization reaction is found extensively in most organic molecules containing double bond unit. This limits their practical application as luminescent materials partly, especially under photoirradiation. Therefore, it is important to obtain E/Z isomers with stable configuration in the excited state after photoirradiation. It is well known that cyanostilbene and its analogues play an important role in the development of organic opto/electronic materials. The substituted cyano group on C=C double bonds has strong electron-withdrawing ability and large steric hindrance, which benefits the formation of donor-acceptor (D-A) structures and formation of intramolecular charge transfer. In our previous work, we reported a triphenylamine-cyanostilbene molecule (TPNCF) formed by modifying the cyanostilbene structure with triphenylamine, which maintained a stable E/Z configuration as a film and in high polar solvents. According to solvatochromism mechanisms and the results of theoretical calculations, we proposed that the charge transfer (CT) excited state between the triphenylamine donor and cyanostilbene acceptor groups induced the stable configuration of the E- and Z- isomers under photoirradiation. Under irradiation, the E/Z isomerization process occurring at a higher energy locally excited (LE) state was suppressed by a rapid internal conversion process from the LE to CT state. This work inspired us to provide a universal and effective molecular design strategy by modifying D-A substituents on double bonds that can successfully stabilize E/Z isomers. To further confirm that the CT excited state induced stable E- and Z- isomers in the cyanostilbene structure under photoirradiation, we designed and synthesized a donor-acceptor phenoxazine-cyanostilbene molecule (PZNCF) and successfully characterized its two E/Z isomers. In comparison with the reported TPNCF molecule, the in-situ NMR and UV spectra of E- and Z- isomers of PZNCF demonstrated that the E/Z isomerization rate became slower under photoirradiation, which indicated that the stronger electron-donating group of phenoxazine substituted in the cyanostilbene structure induced a more stable E/Z isomer configuration in its excited state. DFT calculations and photophysical results indicated that a stronger CT state was generated in both E- and Z- isomers of PZNCF. This further confirmed our hypothesized mechanism where the stable E/Z configuration can be obtained under photoirradiation by forming a suitable donor-acceptor structure to suppress the E/Z isomerization reaction in the LE state by a rapid internal crossing process from the LE to CT state. This molecular design strategy is of great significance to organic photochemistry and photoelectronics for molecules with double bond units. 相似文献
20.
热激活延迟荧光(Thermally activated delayed fluorescence, TADF)材料由于三线态激子可通过反系间窜越(Reverse intersystem crossing, RISC)转换为单线态激子,在有机发光二极管(Organic light-emitting diodes, OLEDs)中理论上可达到100%的激子利用率而被广泛关注。但实验上开发设计高性能TADF材料较为复杂且研究周期较长,理论研究可以从本质上建立材料结构-性能的关系,预测材料的性质并提供一定的分子设计策略。本文围绕高性能TADF材料的开发,从发光原理出发,系统阐述了分子的设计策略及光物理参数如材料单-三线态能级差(Single-triplet energy gap,ΔEST)、系间/反系间窜越速率、吸收/发射光谱、辐射/非辐射速率等的计算原理、计算方法和研究进展。最后我们探讨了TADF材料理论研究面临的机遇和挑战,通过对TADF材料的理论研究综述和研究前景的展望,期待吸引更多的研究工作者,推动该领域的发展和突破。 相似文献