首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last decade, the field of stimuli-responsive luminescent materials have been intensely emerged because of the high potential application to functional sensors or photoelectronic devices. In particular, luminescent molecular crystals constructed from Au(I) complexes have produced a wide range of examples of luminescent alterations when some external stimulations, such as heat, mechanical stress, vapor (or solvents), were applied to the solid samples. In this review, we describe the recent progress through a summary of the reported Au(I) complexes based on their utilized stimuli-responsive mechanisms, which are categorized in crystal phase transitions (“crystal-to-amorphous”, “crystal-to-crystal” and “single-crystal-to-single-crystal” transitions) and molecular rotation in crystalline media, respectively.  相似文献   

2.
Design and synthesis of biodegradable stimuli-responsive polypeptides are important areas considering their promising applications in biomedical fields. This article summarizes the most recent progresses in the development of stimuli-responsive polypeptide materials prepared via ring-opening polymerization of α-amino acid N-carboxyanhydrides. We discuss the design, synthesis and structure-property correlation of emerging materials including thermo-responsive, redox-responsive, photo-responsive and biomolecule responsive polypeptides. Considering the unique structural features of amino acids, we try to emphasize that the thermo-responsive properties not only depend on the amino acid structure but also rely on the secondary structures of polypeptides. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

3.
Organometallic conjugated complexes have become an important type of stimuli-responsive materials because of their appealing electrochemical properties and rich photonic, electronic, and magnetic properties. They are potentially useful in a wide range of applications such as molecular wires, molecular switches, molecular machines, molecular memory, and optoelectronic detections. This review outlines the recent progress on the molecular design of carbometalated ruthenium and osmium complexes and their applications as redox-responsive materials with visible and near-infrared (NIR) absorptions and electron paramagnetic resonance as readout signals. Three molecule systems are introduced, including the symmetric diruthenium complexes, metal-amine conjugated bi-center system, and multi-center redox-active organometallic compounds. Because of the presence of a metal-carbon bond on each metal component and strong electronic coupling between redox sites, these compounds display multiple reversible redox processes at low potentials and each redox state possesses significantly different physical and chemical properties. Using electrochemical potentials as input signals, these materials show reversible NIR absorption spectral changes, making them potentially useful in NIR electrochromism and information storage.  相似文献   

4.
碳纳米管和石墨烯是碳纳米材料的典型代表,其纳米尺度赋予了其优异的光、电、热以及机械性能。然而,这些碳纳米材料间存在较强的范德华力,导致其溶解性差,后续加工处理困难。为提高碳纳米材料的溶解性,通常利用聚合物或其它小分子物质对其进行修饰。而利用刺激响应性聚合物或化合物功能化碳纳米材料,不仅可以提高其溶解性,还可以赋予其环境刺激响应功能。本文主要综述了近年来利用温度、pH、光以及CO2响应聚合物或小分子化合物对碳纳米管和石墨烯进行共价键、非共价键修饰并赋予其环境刺激响应特性的方法、功能和相关应用,展望了修饰得到的纳米碳杂化材料的应用前景及下一步发展方向。  相似文献   

5.
Switching of multiple physical properties by external stimuli in dynamic materials enables applications in, e.g., smart sensors, biomedical tools, as well as data-storage devices. Among stimuli-responsive materials, inorganic-organic molecular hybrids exhibiting thermal order-disorder phase transitions were tested as promising molecular switches of electrical characteristics, including dielectric constant. We aimed at broadening the multifunctional potential of such hybrid materials towards the switching of not only electrical but also other physical properties, e.g., light emission. We report two ionic salts based on luminescent tetracyanidonitridorhenate(V) anions bearing two different diamine ligands, 1,2-diaminoethane ( 1 ) and 1,3-diaminopropane ( 2 ), both crystallizing with polar N-methyl-dabconium cations. They exhibit an order-disorder phase transition related to the heating-induced turning-on of the rotation of polar cations. This leads to a unique synchronous switching of the dielectric constant as well as metal-complex-centered photoluminescence, as demonstrated by changes in, e.g., emission lifetime. The roles of organic cations, non-trivial Re(V) complexes, and their interaction in achieving the coupled thermal switching of electrical and optical properties are discussed utilizing experimental and theoretical approaches.  相似文献   

6.
o-Carborane, a cluster compound containing boron and adjacent carbon atoms, displays intriguing luminescent properties. Recently, compounds containing o-carborane units were found to show suppressed aggregation-induced quenching and intense solid-state emission; they also show potential for the development of stimuli-responsive luminochromic materials. In this Minireview, we introduce three kinds of fundamental photochemical properties: aggregation-induced emission, twisted intramolecular charge transfer in crystals, and environment-sensitive excimer formation in solids. Based on these properties, several types of luminochromism, such as thermos-, vapo-, and mechanochromism, have been discovered. Based mainly on results from recent studies, we illustrate these mechanisms as well as unique luminescent behaviors of o-carborane derivatives.  相似文献   

7.
Recent advancements in controlling the surface properties and particle morphology of the structurally defined mesoporous silica materials with high surface area (>700 m(2) g(-1)) and pore volume (>1 cm(3) g(-1)) have significantly enhanced their biocompatibility. Various methods have been developed for the functionalization of both the internal pore and exterior particle surfaces of these silicates with a tunable pore diameter ranging from 2 to 30 nm and a narrow pore size distribution. Herein, we review the recent research progress on the design of functional mesoporous silica materials for stimuli-responsive controlled release delivery of pharmaceutical drugs, genes, and other chemicals. Furthermore, the recent breakthroughs in utilizing these nanoscale porous materials as sensors for selective detections of various neurotransmitters and biological molecules are summarized.  相似文献   

8.
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host–guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.  相似文献   

9.
Owing to their dynamic attributes, non-covalent supramolecular interactions have enabled a new paradigm in the design and fabrication of multifunctional material systems with programmable properties, performances, and reconfigurable traits. Recently, the “halogen bond” has become an enticing supramolecular synthetic tool that displays a plethora of promising and advantageous characteristics. Consequently, this versatile and dynamic non-covalent interaction has been extensively harnessed in various fields such as crystal engineering, self-assembly, materials science, polymer chemistry, biochemistry, medicinal chemistry and nanotechnology. In recent years, halogen bonding has emerged as a tunable supramolecular synthetic tool in the design of functional liquid-crystalline materials with adjustable phases and properties. In this Concept article, the use of halogen bond in the field of stimuli-responsive smart soft materials, that is, liquid crystals is discussed. The design, synthesis and characterization of molecular and macromolecular liquid crystalline materials are described and the modulation of their properties has been emphasized. The power of halogen bonding in offering a large variety of functional liquid crystalline materials from readily accessible mesomorphic and non-mesomorphic complementary building blocks is highlighted. The article concludes with a perspective on the challenges and opportunities in this emerging endeavor towards the realization of enabling and elegant dynamic functional materials.  相似文献   

10.
Graphene is a two-dimensional sp2 hybridized carbon material that has attracted tremendous attention for its stimuli-responsive applications, owing to its high surface area and excellent electrical, optical, thermal, and mechanical properties. The physicochemical properties of graphene can be tuned by surface functionalization. The biomedical field pays special attention to stimuli-responsive materials due to their responsive abilities under different conditions. Stimuli-responsive materials exhibit great potential in changing their behavior upon exposure to external or internal factors, such as pH, light, electric field, magnetic field, and temperature. Graphene-based materials, particularly graphene oxide (GO), have been widely used in stimuli-responsive applications due to their superior biocompatibility compared to other forms of graphene. GO has been commonly utilized in tissue engineering, bioimaging, biosensing, cancer therapy, and drug delivery. GO-based stimuli-responsive platforms for wound healing applications have not yet been fully explored. This review describes the effects of different stimuli-responsive factors, such as pH, light, temperature, and magnetic and electric fields on GO-based materials and their applications. The wound healing applications of GO-based materials is extensively discussed with cancer therapy and drug delivery.  相似文献   

11.
Smart polymers are a special class of polymers, which respond to the various external stimuli by changing their properties. Recent developments in synthetic polymer chemistry have provided the possibility of designing and synthesis of various new stimuli-responsive polymers. These stimuli-responsive polymers can be used to prepare smart drug delivery systems (DDS) by grafting them on various nanomaterials. The main aim of this review is to present collective information on various stimuli-responsive polymers grafted on silica nanoparticles for the preparation of smart DDS. The stimuli covered are pH, temperature, redox, reactive oxygen species (ROS), glucose concentration, enzymes, magnetic field, and so forth. The structures of various stimuli-responsive polymers are shown with their relevance to the preparation of smart DDS. The crucial roles of macromolecular design and synthesis of smart polymers in the development of stimuli-responsive DDS are discussed with examples from literature and the challenges that still exist in this area of research are presented.  相似文献   

12.
Supramolecular polymers, polymeric systems beyond the molecule, have attracted more and more attention from scientists due to their applications in various fields, including stimuli-responsive materials, healable materials, and drug delivery. Due to their good selectivity and convenient enviro-responsiveness, crown ether-based molecular recognition motifs have been actively employed to fabricate supramolecular polymers with interesting properties and novel applications in recent years. In this tutorial review, we classify supramolecular polymers based on their differences in topology and cover recent advances in the marriage between crown ether-based molecular recognition and polymer science.  相似文献   

13.
Studies on lanthanide and actinide halide complexes with neutral O- and/or N-donor ligands have intensified in recent years due to their implications in homogeneous catalysis, magnetic and optical materials, as synthons for the synthesis of novel coordination and organometallic compounds and, for Ln(II) halide complexes, as reducing agents in organic synthesis. Synthetic strategies, structural diversity as well as some important properties and reactivities of these anhydrous metal (including scandium and yttrium) halide complexes are reviewed here. These complexes also hold potential as starting materials for constructing more sophisticated heterometallic assemblies by crystal engineering; the compounds of this class, either discrete ion-pairs or coordination polymers, being discussed separately under the heading heterometallic lanthanide and actinide halide complexes. The aim of this article is to provide a reference text for the researchers working in the lanthanide and actinide coordination chemistry field and to identify and signify the area of future research.  相似文献   

14.
A broad range of stimuli, including light, heat, mechanical force, or changes in chemical potential, may be used to toggle Ru-based catalysts between multiple distinct states of activity. Catalysts with such features offer a means to temporally- and, in some cases, spatially-control a variety of polymerizations, and thus should facilitate access to synthetic macromolecular materials with tunable structures and properties. Due to the intrinsic versatility and robustness of the Grubbs-type catalyst platforms, numerous remotely controlled ring-opening metathesis polymerizations have been introduced. Herein, selected examples of stimuli-responsive catalysts that have been recently used for such purposes are surveyed and discussed. Perspectives on potential opportunities for development and growth as well as an outlook for the field are also provided. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2949–2960  相似文献   

15.
Taking advantages of the impressing behaviors of room-temperature phosphorescence (RTP), the explorations in RTP materials are not only limited to efficient emission and ultralong lifetime of phosphorescence. The discovery and creation of stimuli-responsive properties have become the major pursuit, which will lay a solid foundation for future applications in RTP materials. Based on this, a review centered on recent progress of stimuli-responsive RTP materials is summarized to show frontier development in polymer systems. Different kinds of stimuli-responsive factors including light, oxygen, temperature, mechanical force and pH regulations are investigated in this review. Many potential applications and promising strategies are deeply discussed with the hope to assist future studies in this area.  相似文献   

16.
The knowledge of azaborine chemistry is growing as an important branch in organic semiconductor materials. Specifically, BN-embedded aromatic compounds have attracted great attention due to their fascinating properties resulted from the replacement of CC unit with isoelectronic BN unit in aromatics. Though great insights have been provided into the synthetic chemistry and photophysical properties of BN-embedded aromatics, their applications in optoelectronic areas are still at a young stage. This short review summarizes the recent progress of BN-embedded aromatics with optoelectronic applications in organic field-effect transistors, organic light-emitting diodes, organic photovoltaics, stimuli-responsive luminescent devices, and chemical sensors.  相似文献   

17.
Electronic structure methods based on quantum mechanics (QM) are widely employed in the computational predictions of the molecular properties and optoelectronic properties of molecular materials. The computational costs of these QM methods, ranging from density functional theory (DFT) or time-dependent DFT (TDDFT) to wave-function theory (WFT), usually increase sharply with the system size, causing the curse of dimensionality and hindering the QM calculations for large sized systems such as long polymer oligomers and complex molecular aggregates. In such cases, in recent years low scaling QM methods and machine learning (ML) techniques have been adopted to reduce the computational costs and thus assist computational and data driven molecular material design. In this review, we illustrated low scaling ground-state and excited-state QM approaches and their applications to long oligomers, self-assembled supramolecular complexes, stimuli-responsive materials, mechanically interlocked molecules, and excited state processes in molecular aggregates. Variable electrostatic parameters were also introduced in the modified force fields with the polarization model. On the basis of QM computational or experimental datasets, several ML algorithms, including explainable models, deep learning, and on-line learning methods, have been employed to predict the molecular energies, forces, electronic structure properties, and optical or electrical properties of materials. It can be conceived that low scaling algorithms with periodic boundary conditions are expected to be further applicable to functional materials, perhaps in combination with machine learning to fast predict the lattice energy, crystal structures, and spectroscopic properties of periodic functional materials.

Low scaling quantum mechanics calculations and machine learning can be employed to efficiently predict the molecular energies, forces, and optical and electrical properties of molecular materials and their aggregates.  相似文献   

18.
Flexible metal-organic materials are of growing interest owing to their ability to undergo reversible structural transformations under external stimuli. Here, we report flexible metal-phenolic networks (MPNs) featuring stimuli-responsive behavior to diverse solute guests. The competitive coordination of metal ions to phenolic ligands of multiple coordination sites and solute guests (e.g., glucose) primarily determines the responsive behavior of the MPNs, as revealed experimentally and computationally. Glucose molecules can be embedded into the dynamic MPNs upon mixing, leading to the reconfiguration of the metal-organic networks and thus changes in their physicochemical properties for targeting applications. This study expands the library of stimuli-responsive flexible metal-organic materials and the understanding of intermolecular interactions between metal-organic materials and solute guests, which is essential for the rational design of responsive materials for various applications.  相似文献   

19.
Organoplatinum(Ⅱ) compounds have received enormous attention over the past decades due to their square-planar geometry as well as intriguing photo-physical properties.Self-assembly has emerged as an excellent approach to create well-ordered supramolecular architectures with tunable properties,which underpin the role of solvent-directed approach for the design of functional materials.In this minireview,the recent advances on supramolecular self-assembly of cyclometalated platinum(Ⅱ) complexes have been discussed.During the self-assembly process,non-covalent Pt-Pt and π-π interactions play crucial roles in controlling the structures and functions of the resulting assemblies.  相似文献   

20.
(Bio)degradation in response to external stimuli (stimuli-responsive degradation, SRD) is a desired property in constructing novel nanostructured materials. For polymer-based multifunctional drug delivery applications, the degradation enables fast and controlled release of encapsulated therapeutic drugs from delivery vehicles in targeted cells. It also ensures the clearance of the empty device after drugs are delivered to the body. This review summarizes recent development of various strategies to the design and synthesis of self-assembled micellar aggregates based on novel amphiphilic block copolymers having different numbers of stimuli-responsive cleavable elements at various locations. These cleavable linkages including disulfide, acid-labile, and photo-cleavable linkages are incorporated into micelles, and then are cleaved in response to cellular triggers such as reductive reaction, light, and low acid. The well-designed SRD micelles have been explored as controlled/enhanced delivery vehicles of drugs and genes. For future design and development of effective stimuli-responsive degradable micelles toward tumor-targeting delivery applications in vivo, a high degree of control over degradation for tunable release of encapsulated anticancer drugs as well as bioconjugation for active tumor-targeting is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号