首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
关俊  李念武  于乐 《物理化学学报》2021,37(2):2009011-0
金属锂具有极高的比容量(3860 mAh·g?1)和最低的电化学反应电位(相对标准氢电位为?3.040 V),被认为是高能量密度二次电池最具潜力的负极材料。然而金属锂负极界面稳定性差、不可控的枝晶生长、沉积/剥离过程中巨大的体积变化等严重阻碍了金属锂负极的商业化应用。在金属锂表面构建一层物理化学性质稳定的人工界面保护层被认为是解决金属锂负极界面不稳定和枝晶生长,缓解体积膨胀带来的界面波动等一系列问题的有效手段。本综述依据界面传导性质,从离子导通而电子绝缘的人工固态电解质界面(SEI)层、离子/电子混合传导界面、纳米界面钝化层三个部分对人工界面保护层进行了归纳总结。分析了人工界面保护层的物质结构与性能之间的构效关系,探讨了如何提高人工界面保护层的物理化学稳定性、界面离子输运、界面强度与柔韧性、界面兼容性等。最后,指出用于金属锂负极的人工界面保护层目前面临的主要挑战,并对其未来的发展进行了展望。  相似文献   

2.
锂金属由于其高比容量和低电极电势等优点被认为是下一代高比能量电池体系中最有潜力的负极材料。然而由于锂金属的高活性,锂负极在循环过程中会产生大量的枝晶,导致SEI(solid-electrolyte interphase)破裂,并且枝晶增加了电极与电解液的接触面积,使得副反应进一步增加。此外,脱落的枝晶形成死锂,从而降低电池的充放电库仑效率。并且不可控的锂枝晶持续生长会刺穿隔膜引发电池短路,伴随着电池热失控等安全问题。本综述基于锂负极存在的主要挑战,结合理解锂枝晶的成核生长模型等机理总结并深度分析近些年来在液态和固态电解质体系中改善锂金属负极的主要策略及其作用机理,为促进高比能量锂金属电池的应用提供借鉴参考作用。  相似文献   

3.
金属锂具有高理论比容量和低还原电位, 是锂电池阳极的理想材料之一. 但在长期循环充放电过程中, 金属锂因锂枝晶生长会导致出现界面恶化及能量损失严重等问题, 对锂金属电极与电解质表界面反应的优化是一个重要研究方向. 本文介绍了锂枝晶产生的危害, 从分析及抑制锂枝晶沉积两方面综合评述了为解决这一问题所采取的方法, 包括固态电解质界面形成机制和保护机理、 表面改性、 三维锂阳极和液态/固态电解质等方法, 总结了各种方法的优劣势, 并展望锂金属电池在能源领域的研究前景.  相似文献   

4.
随着电化学储能市场的迅猛发展, 当前商用锂离子电池难以满足人们对高能量密度储能器件的需求. 锂金属具有高比容量和低氧化还原电位等优点, 被认为是下一代二次电池的理想负极材料. 然而, 锂金属负极在充放电过程中会出现体积变化大、 枝晶生长、 界面不稳定等问题, 严重阻碍了其在二次电池中的实际应用. 三维多孔材料具有骨架/空间互穿网络结构、 比表面积大、 孔隙发达和机械性能好等物理特性, 用作金属锂负极的集流体, 在锂沉积/溶解过程中可以起到降低局部有效电流密度、 均匀电场分布和降低锂离子浓度梯度的作用, 有望实现锂的均匀成核和无枝晶沉积, 同时抑制了电极的体积膨胀. 尽管有关三维集流体的研究报道不断出现, 但综合系统评价现有各种三维集流体体系的工作鲜见报道. 本文聚焦锂金属负极三维集流体的构建及应用研究进展, 首先分析了三维集流体抑制锂枝晶生长的基本原理及局限性, 继而重点关注了三维集流体的结构调控、 表面改性和功能化等应对策略对锂成核、 沉积过程的影响, 并对不同材质三维集流体的优缺点进行了归纳总结. 最后, 面向实用化, 分析并展望了三维集流体应用于锂金属电池的发展前景.  相似文献   

5.
锂金属作为下一代储能电池的理想负极材料一直受到极大的关注,然而锂枝晶的不可控生长和负极副反应带来的低库伦效率问题严重限制了锂金属电池的发展。这里,我们提出了一种多孔泡沫铜和硫脲协同作用的策略,利用硫脲分子的超填充作用实现锂金属在多孔泡沫铜表面的均匀沉积。在电解液中添加0.02 mol·L-1硫脲作为电解质添加剂,采用多孔泡沫铜的Li||Cu半电池在循环300圈以后,库伦效率仍保持在98%以上。此外,在5C的高倍率条件下,Li||Li FePO4全电池循环300圈以后仍有94%的容量保持率。本工作为锂金属负极保护提供了一种新的策略并且该策略也可以扩展到其他金属负极保护中,非常有利于下一代高能量密度储能电池的开发。  相似文献   

6.
Uneven lithium (Li) electrodeposition hinders the wide application of high-energy-density Li metal batteries (LMBs). Current efforts mainly focus on the side-reaction suppression between Li and electrolyte, neglecting the determinant factor of mass transport in affecting Li deposition. Herein, guided Li+ mass transport under the action of a local electric field near magnetic nanoparticles or structures at the Li metal interface, known as the magnetohydrodynamic (MHD) effect, are proposed to promote uniform Li deposition. The modified Li+ trajectories are revealed by COMSOL Multiphysics simulations, and verified by the compact and disc-like Li depositions on a model Fe3O4 substrate. Furthermore, a patterned mesh with the magnetic Fe−Cr2O3 core-shell skeleton is used as a facile and efficient protective structure for Li metal anodes, enabling Li metal batteries to achieve a Coulombic efficiency of 99.5 % over 300 cycles at a high cathode loading of 5.0 mAh cm−2. The Li protection strategy based on the MHD interface design might open a new opportunity to develop high-energy-density LMBs.  相似文献   

7.
将聚苯乙烯磺酸(PSS)进行锂化处理后, 涂覆在锂箔表面, 在锂金属表面构筑一层均匀的聚苯乙烯磺酸锂(PSSLi)界面保护层, 形成PSSLi@Li复合电极. 通过红外光谱(FTIR)、 电化学阻抗谱(EIS)、 电池性能分析和有限元多物理场仿真模拟等方法, 对该复合电极进行了结构和性能研究. 结果表明, PSSLi界面保护层能有效地避免电解液与锂金属的直接接触, 抑制了“死锂”和锂枝晶的生成. 聚苯乙烯磺酸锂具有整齐排布的磺酸基团, 为锂离子提供了稳定的传输通道, 能够均匀化锂离子的迁移速率, 调节锂离子在电极表面的浓度分布, 并实现均匀的锂金属沉积/剥离. 电化学实验数据表明, 将该PSSLi界面层涂覆在铜箔表面进行库仑效率测试, 循环 350次实验后仍然能够保持在99.5%以上; 利用PSSLi@Li复合电极组装形成的对称电池, 在1 mA/cm2的电流密度、 1 mA·h/cm2的面积容量下, 能够稳定循环1200 h以上; PSSLi@Li与磷酸铁锂正极材料组装的全电池, 在1C倍率下循环500次后, 仍具有115 mA·h/g的容量, 容量保持率可达81%以上; 在8C的高倍率下, 该电池的容量可达到105 mA·h/g.  相似文献   

8.
As the application of lithium-ion batteries in advanced consumer electronics, energy storage systems, plug-in hybrid electric vehicles, and electric vehicles increases, there has emerged an urgent need for increasing the energy density of such batteries. Lithium metal anode is considered as the "Holy Grail" for high-energy-density electrochemical energy storage systems because of its low reduction potential (-3.04 V vs standard hydrogen electrode) and high theoretical specific capacity (3860 mAh·g-1). However, the practical application of lithium metal anode in rechargeable batteries is severely limited by irregular lithium dendrite growth and high reactivity with the electrolytes, leading to poor safety performance and low coulombic efficiency. Recent research progress has been well documented to suppress dendrite growth for achieving long-term stability of lithium anode, such as building artificial protection layers, developing novel electrolyte additives, constructing solid electrolytes, using functional separator, designing composite electrode or three-dimensional lithium-hosted material. Among them, the use of electrolyte additives is regarded as one of the most effective and economical methods to improve the performance of lithium-ion batteries. As a natural polyphenol compound, tannic acid (TA) is significantly cheaper and more abundant compared with dopamine, which is widely used for the material preparation and modification in the field of lithium-ion batteries. Herein, TA is first reported as an efficient electrolyte film-forming additive for lithium metal anode. By adding 0.15% (mass fraction, wt.) TA into the base electrolyte of 1 mol·L-1 LiPF6-EC/DMC/EMC (1 : 1 : 1, by wt.), the symmetric Li|Li cell exhibited a more stable cyclability of 270 h than that of only 170 h observed for the Li|Li cell without TA under the same current density of 1 mA·cm-2 and capacity of 1 mAh·cm-2 (with a cutoff voltage of 0.1 V). Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and energy-dispersive X-ray spectroscopy (EDS) analyses demonstrated that TA participated in the formation of a dense solid electrolyte interface (SEI) layer on the surface of the lithium metal. A possible reaction mechanism is proposed here, wherein the small amount of added polyphenol compound could have facilitated the formation of LiF through the hydrolysis of LiPF6, following which the resulting phenoxide could react with dimethyl carbonate (DMC) through transesterification to form a cross-linked polymer, thereby forming a unique organic/inorganic composite SEI film that significantly improved the electrochemical performance of the lithium metal anode. These results demonstrate that TA can be used as a promising film-forming additive for the lithium metal anode.  相似文献   

9.
金属锂电池是下一代高能量密度电池体系的代表。然而,高比能金属锂电池的发展受到界面诸多问题的限制,如:金属锂负极枝晶生长、隔膜界面兼容性、正极界面不稳定等,影响了金属锂电池的界面传质传荷过程,并导致金属锂界面环境恶化、电池的容量衰减、安全性能下降等问题。金属有机骨架(MOF)是一种具有稳定多孔结构的有机无机杂化材料,近年来在高比能金属锂电池领域受到广泛关注。其多孔结构与开放的金属位点(OMs)提供了优异的离子电导率,稳定的空间结构提供了较高的机械强度,多样的官能团与金属节点带来丰富的功能性。本文分析了金属锂电池界面的主要挑战,结合金属锂界面的成核模型,总结了MOF及其衍生材料在解决锂金属负极界面、隔膜界面、以及正负极界面稳定性相互作用等方面的研究进展和作用机理,为解决高比能金属锂电池界面失稳问题提供了解决途径,并展望了MOF基材料的设计与发展方向。  相似文献   

10.
徐小龙  王绥军  金翼  汪浩 《应用化学》2020,37(6):703-708
为了解决锂电池负极表面锂枝晶生长带来的性能衰退和安全问题。 以沸石咪唑酯骨架-8(ZIF-8)为前驱体制得介孔碳材料(MCM),用于金属锂负极表面改性。 X射线粉末衍射(XRD)和拉曼光谱表明,退火制得的MCM具有一定的石墨化程度,N2气吸脱附测试(BET)证明MCM具有典型的介孔特征。 对比不同温度退火样品的XRD、拉曼光谱和BET测试结果,确定900 ℃为最佳退火温度。 优化的MCM作为表面改性剂对金属锂负极进行改性研究。 电池充放电循环后,负极样品的XRD和扫描电子显微镜(SEM)测试表明,MCM能够通过均衡锂负极表面的电荷分布抑制金属锂的取向沉积和锂枝晶的生长。 本研究为制备抑制锂电池负极枝晶生长表面改性剂提供了一种简便而有效的合成方法,有利于锂电池循环寿命的延长和安全性能的提高。  相似文献   

11.
随着电动汽车和便携式电子产品的快速发展, 人们对于高比能二次电池的需求越来越迫切. 锂金属以其极高的理论比容量和极低的电极电势被视为下一代高比能电池理想负极材料之一. 但是, 锂枝晶的生长及体积膨胀等问题限制了金属锂负极的实际应用. 在金属锂负极中引入三维骨架可以有效抑制锂枝晶生长, 缓解体积膨胀. 其中亲锂骨架可以降低锂的形核能垒, 诱导锂的均匀成核, 更加有效地调控锂沉积行为. 本文结合国内外的研究进展总结了锂金属负极中亲锂骨架的研究成果. 根据亲锂材料的不同对亲锂骨架进行了分类, 总结了各类亲锂骨架在调控锂沉积行为和提高电池性能方面取得的成果, 并对其今后的研究和发展进行了展望.  相似文献   

12.
对高比能量锂离子电池需求的不断增加激发了锂金属负极的应用研究。锂金属具有高放电比容量(3860 mAh·g?1),低电极电位(?3.04 V),是锂离子电池的理想负极材料。然而,锂金属在循环过程中会形成不稳定的固态电解质(SEI)膜,而且会生成枝晶,枝晶的生长会引发电池短路等安全问题,极大地阻碍了其应用。理想的SEI膜应具有良好的锂离子传导性、表面电子绝缘性和机械强度,可调控锂离子在表面均匀沉积,促进离子传输,抑制枝晶生长,因此构筑功能化SEI膜是解决锂金属负极所面临挑战的一项有效策略。本综述以锂金属枝晶形成和生长的机理为出发点,分析总结SEI膜的构建策略、不同组成SEI膜的结构和功能特性及其对锂金属负极性能的影响,并对锂金属实用化面临的挑战及未来发展方向进行了展望。  相似文献   

13.
尽管传统的石墨负极在商业化锂离子电池中取得了成功,但其理论容量低(372 mAh·g?1)、本身不含锂的先天缺陷限制了其在下一代高比能量锂电池体系中的应用,特别是在需要锂源的锂-硫和锂-空气电池体系中。金属锂因其极高的理论比容量(3860 mAh·g?1)和低氧化还原电势(相对于标准氢电极为?3.040 V),被认为是下一代锂电池负极材料的最佳选择之一。但是,金属锂负极存在库伦效率低、循环性能差、安全性差等一系列瓶颈问题亟待解决,而循环过程中锂枝晶的生长、巨大的体积变化、以及电极界面不稳定等是导致这些问题的关键因素。本文综述了近年来关于金属锂负极瓶颈问题及其机理,包括金属锂电极表面固态电解质界面膜的形成,锂枝晶的生长行为,以及惰性死锂的形成。同时,本文还介绍了目前用于研究金属锂负极的先进表征技术,这些技术为研究人员深入认识金属锂负极的失效机制提供了重要信息。  相似文献   

14.
金属锂作为电池的负极材料具有极高的比容量和极低的氧化还原电位,能够显著提升电池的能量密度。然而,金属锂负极在实际应用中所面临的主要问题是锂枝晶、界面副反应和电极体积变化大的难题。在本文中,我们提出了一种通过将定量的金属锂与三维骨架进行复合形成三维泡沫锂负极的策略,并利用三维泡沫锂来抑制锂枝晶的生长和缓解电极的体积变化。因此,三维泡沫锂电极有利于金属锂负极的高效利用,并能借助其与平面锂箔相比更高的比表面积和更多的反应位点来提升电池的倍率性能。因此,通过采用三维泡沫锂,对称电池的循环寿命和倍率性能都得到了有效的提升。EIS数据结果表明,三维泡沫锂能够减小对称电池的电荷转移阻抗。而且,将三维泡沫锂作为负极组装的LTO全电池,与锂箔作为负极相比,循环1000周平均放电比容量从65 mAh·g-1提升至121 mAh·g-1。  相似文献   

15.
本文采用机械辊压方法在金属锂表面通过原位固相反应生成LiC6异质微结构界面层,并研究了在碳酸酯有机电解液体系下该异质层对锂电化学沉积和溶解行为的影响。通过形貌表征与电化学测试发现,LiC6异质层能够有效提升锂电化学沉积的可逆性与均匀性,从而抑制枝晶生长及维持沉积/溶解界面的稳定。使用异质层改性金属锂负极的扣式全电池也较纯金属锂负极体系表现出更为优异的循环稳定性。  相似文献   

16.
金属锂具有超高的理论容量(3860 mAh·g-1)和低氧化还原电位(-3.04 V vs.标准氢电极),是极具吸引力的下一代高能量密度电池的负极材料。然而,循环过程中的体积膨胀、锂枝晶生长和“死锂”等问题严重的限制了其实际应用。合理设计三维骨架调控金属锂的成核行为是抑制锂枝晶生长的有效策略。本文中,我们发展了一种“软硬双模板”的方法合成了兼具大孔和介孔的三维碳-碳化钛(Three-dimensional macro-/mesoporous C-TiC,表示为3DMM-C-TiC)复合材料。多级孔道为金属锂的沉积提供了足够的空间,缓冲充放电中巨大的体积变化。此外,TiC的引入显著增强多孔骨架的导电性,改善锂金属的成核行为,促进金属锂的均匀成核和沉积,抑制锂枝晶生长。3DMM-C-TiC||Li电池测试表明,在循环300圈以后,库伦效率仍保持在98%以上。此外,所得材料与LiFePO4 (LFP)组成的全电池也表现出优异的倍率和循环性能。本工作为无枝晶锂金属负极的设计提供了新的思路。  相似文献   

17.
锂金属具有理论比容量高、电位低等优点,被认为是电极中的“圣杯”。然而,锂金属负极在循环过程当中存在着不可控的枝晶生长、体积膨胀等问题,严重地阻碍了锂金属电池的商业化进程。本综述首先概述了锂枝晶的形成机理,然后对由小及大,自内而外,总结了近年来三种不同层次的锂金属电池复合负极:锂金属负极内部结构的复合、锂金属电池内部结构的复合以及锂金属电池内部环境与外界操作条件的复合。最后,本综述对未来多层次锂金属电池复合负极的前景做出了展望。  相似文献   

18.
锂金属是下一代高能量密度电池的关键负极,然而其实用化面临着一系列问题,主要包括循环过程中体积变化大、枝晶生长等。使用三维集流体是解决这些问题的有效方法,然而现有大多数三维集流体存在重量大、体积大、表面亲锂性差、成本高等问题。针对上述问题,本文以低成本的细菌纤维素为前驱体,通过直接碳化制备出具有连通网络的轻质三维碳集流体,其表面均匀分布的含氧官能团可以促进锂离子的均匀成核和沉积,有效抑制了枝晶生长。值得注意的是,该集流体的面密度仅为0.32 mg·cm?2,在3 mAh·cm?2比容量的锂金属负极中质量占比仅为28.8%。电化学测试结果表明,该集流体在3 mA·cm?2的高电流密度或4 mAh·cm?2的高循环容量的工作条件下,稳定循环超过150次,并且在对称电池或与LiNi0.8Co0.15Al0.05匹配的全电池中也表现出良好的电化学性能。  相似文献   

19.
In lithium metal batteries, electrolytes containing a high concentration of salts have demonstrated promising cyclability, but their practicality with respect to the cost of materials is yet to be proved. Here we report a fluorinated aromatic compound, namely 1,2-difluorobenzene, for use as a diluent solvent in the electrolyte to realize the “high-concentration effect”. The low energy level of the lowest unoccupied molecular orbital (LUMO), weak binding affinity for lithium ions, and high fluorine-donating power of 1,2-difluorobenzene jointly give rise to the high-concentration effect at a bulk salt concentration near 2 m , while modifying the composition of the solid-electrolyte-interphase (SEI) layer to be rich in lithium fluoride (LiF). The employment of triple salts to prevent corrosion of the aluminum current collector further improves cycling performance. This study offers a design principle for achieving a local high-concentration effect with reasonably low bulk concentrations of salts.  相似文献   

20.
Although great progress has been made in new electrolytes for lithium metal batteries (LMBs), the intrinsic relationship between electrolyte composition and cell performance remains unclear due to the lack of valid quantization method. Here, we proposed the concept of negative center of electrostatic potential (NCESP) and Mayer bond order (MBO) to describe solvent capability, which highly relate to solvation structure and oxidation potential, respectively. Based on established principles, the selected electrolyte with 1.7 M LiFSI in methoxytrimethylsilane (MOTMS)/ (trifluoromethyl)trimethylsilane (TFMTMS) shows unique hyperconjugation nature to stabilize both Li anode and high-voltage cathode. The 4.6 V 30 μm Li||4.5 mAh cm−2 lithium cobalt oxide (LCO) (low N/P ratio of 1.3) cell with our electrolyte shows stable cycling with 91 % capacity retention over 200 cycles. The bottom-up design concept of electrolyte opens up a general strategy for advancing high-voltage LMBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号