首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have investigated gas‐phase fragmentation reactions of protonated benzofuran neolignans (BNs) and dihydrobenzofuran neolignans (DBNs) by accurate‐mass electrospray ionization tandem and multiple‐stage (MSn) mass spectrometry combined with thermochemical data estimated by Computational Chemistry. Most of the protonated compounds fragment into product ions B ([M + H–MeOH]+), C ([ B –MeOH]+), D ([ C –CO]+), and E ([ D –CO]+) upon collision‐induced dissociation (CID). However, we identified a series of diagnostic ions and associated them with specific structural features. In the case of compounds displaying an acetoxy group at C‐4, product ion C produces diagnostic ions K ([ C –C2H2O]+), L ([ K –CO]+), and P ([ L –CO]+). Formation of product ions H ([ D –H2O]+) and M ([ H –CO]+) is associated with the hydroxyl group at C‐3 and C‐3′, whereas product ions N ([ D –MeOH]+) and O ([ N –MeOH]+) indicate a methoxyl group at the same positions. Finally, product ions F ([ A –C2H2O]+), Q ([ A –C3H6O2]+), I ([ A –C6H6O]+), and J ([ I –MeOH]+) for DBNs and product ion G ([ B –C2H2O]+) for BNs diagnose a saturated bond between C‐7′ and C‐8′. We used these structure‐fragmentation relationships in combination with deuterium exchange experiments, MSn data, and Computational Chemistry to elucidate the gas‐phase fragmentation pathways of these compounds. These results could help to elucidate DBN and BN metabolites in in vivo and in vitro studies on the basis of electrospray ionization ESI‐CID‐MS/MS data only.  相似文献   

2.
The possibility of electron binding to five molecules (i.e., F3N → BH3, H2FN → BH3, HF2N → BH3, H3N → BH2F, H3N → BHF2) was studied at the coupled cluster level of theory with single, double, and noniterative triple excitations and compared to earlier results for H3N → BH3 and H3N → BF3. All these neutral complexes involve dative bonds that are responsible for significant polarization of these species that generates large dipole moments. As a consequence, all of the neutral systems studied, except F3N → BH3, support electronically stable dipole‐bound anionic states whose calculated vertical electron detachment energies are 648 cm?1 ([H2FN → BH3]?), 234 cm?1 ([HF2N → BH3]?), 1207 cm?1 ([H3N → BH2F]?), and 1484 cm?1 ([H3N → BHF2]?). In addition, we present numerical results for a model designed to mimic charge–transfer (CT) and show that the electron binding energy correlates with the magnitude of the charge flow in the CT complex. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

3.
The compound [NH4(NH3)4][Co(C2B9H11)2] · 2 NH3 ( 1 ) was prepared by the reaction of Na[Co(C2B9H11)2] with a proton‐charged ion‐exchange resin in liquid ammonia. The ammoniate 1 was characterized by low temperature single‐crystal X‐ray structure analysis. The anionic part of the structure consists of [Co(C2B9H11)2] complexes, which are connected via C‐H···H‐B dihydrogen bonds. Furthermore, 1 contains an infinite equation/tex2gif-stack-2.gif[{NH4(NH3)4}+(μ‐NH3)2] cationic chain, which is formed by [NH4(NH3)4]+ ions linked by two ammonia molecules. The N‐H···N hydrogen bonds range from 1.92 to 2.71Å (DHA = Donor···Acceptor angles: 136‐176°). Additional N‐H···H‐B dihydrogen bonds are observed (H···H: 2.3‐2.4Å).  相似文献   

4.
The relative stability of the radicals that can be produced from amine–boranes and phosphine–boranes is investigated at the G3‐RAD level of theory. Aminyl ([RNH].:BH3) and phosphinyl ([RPH].:BH3) radicals are systematically more stable than the boryl analogues, [RNH2]:BH2. and [RPH2]:BH2.. Despite similar stability trends for [RNH].:BH3 and [RPH].:BH3 radicals with respect to boryl radicals, there are significant dissimilarities between amine– and phosphine–boranes. The homolytic bond dissociation energy of the N?H bond decreases upon association of the amines with BH3, whereas that of the P?H bond for phosphines increases. The stabilization of the free amine is much smaller than that of the corresponding aminyl radical, whereas for phosphines this is the other way around. The homolytic bond dissociation energy of the B?H bond of borane decreases upon complexation with both amines and phosphines.  相似文献   

5.
The proton‐induced Ru?C bond variation, which was previously found to be relevant in the water oxidation, has been investigated by using cyclometalated ruthenium complexes with three phenanthroline (phen) isomers. The designed complexes, [Ru(bpy)2(1,5‐phen)]+ ([ 2 ]+), [Ru(bpy)2(1,6‐phen)]+ ([ 3 ]+), and [Ru(bpy)2(1,7‐phen)]+ ([ 4 ]+) were newly synthesized and their structural and electronic properties were analyzed by various spectroscopy and theoretical protocols. Protonation of [ 4 ]+ triggered profound electronic structural change to form remote N‐heterocyclic carbene (rNHC), whereas protonation of [ 2 ]+ and [ 3 ]+ did not affect their structures. It was found that changes in the electronic structure of phen beyond classical resonance forms control the rNHC behavior. The present study provides new insights into the ligand design of related ruthenium catalysts.  相似文献   

6.
A new ammine dual‐cation borohydride, LiMg(BH4)3(NH3)2, has been successfully synthesized simply by ball‐milling of Mg(BH4)2 and LiBH4 ? NH3. Structure analysis of the synthesized LiMg(BH4)3(NH3)2 revealed that it crystallized in the space group P63 (no. 173) with lattice parameters of a=b=8.0002(1) Å, c=8.4276(1) Å, α=β=90°, and γ=120° at 50 °C. A three‐dimensional architecture is built up through corner‐connecting BH4 units. Strong N? H???H? B dihydrogen bonds exist between the NH3 and BH4 units, enabling LiMg(BH4)3(NH3)2 to undergo dehydrogenation at a much lower temperature. Dehydrogenation studies have revealed that the LiMg(BH4)3(NH3)2/LiBH4 composite is able to release over 8 wt % hydrogen below 200 °C, which is comparable to that released by Mg(BH4)3(NH3)2. More importantly, it was found that release of the byproduct NH3 in this system can be completely suppressed by adjusting the ratio of Mg(BH4)2 and LiBH4 ? NH3. This chemical control route highlights a potential method for modifying the dehydrogenation properties of other ammine borohydride systems.  相似文献   

7.
Titanium(III) complexes containing unprecedented (NH2BH2NHBH3)2− and {N(BH3)3}3− ligands have been isolated, and their structures elucidated by a combination of experimental and theoretical methods. The treatment of the trimethyl derivative [TiCp*Me3] (Cp*=η5-C5Me5) with NH3BH3 (3 equiv) at room temperature gives the paramagnetic dinuclear complex [{TiCp*(NH2BH3)}2(μ-NH2BH2NHBH3)], which at 80 °C leads to the trinuclear hydride derivative [{TiCp*(μ-H)}33-N(BH3)3}]. The bonding modes of the anionic BN fragments in those complexes, as well as the dimethylaminoborane group trapped on the analogous trinuclear [{TiCp*(μ-H)}33-H)(μ3-NMe2BH2)], have been studied by X-ray crystallography and density functional theory (DFT) calculations.  相似文献   

8.
The monoammoniate of lithium amidoborane, Li(NH3)NH2BH3, was synthesized by treatment of LiNH2BH3 with ammonia at room temperature. This compound exists in the amorphous state at room temperature, but at ?20 °C crystallizes in the orthorhombic space group Pbca with lattice parameters of a=9.711(4), b=8.7027(5), c=7.1999(1) Å, and V=608.51 Å3. The thermal decomposition behavior of this compound under argon and under ammonia was investigated. Through a series of experiments we have demonstrated that Li(NH3)NH2BH3 is able to absorb/desorb ammonia reversibly at room temperature. In the temperature range of 40–70 °C, this compound showed favorable dehydrogenation characteristics. Specifically, under ammonia this material was able to release 3.0 equiv hydrogen (11.18 wt %) rapidly at 60 °C, which represents a significant advantage over LiNH2BH3. It has been found that the formation of the coordination bond between ammonia and Li+ in LiNH2BH3 plays a crucial role in promoting the combination of hydridic B? H bonds and protic N? H bonds, leading to dehydrogenation at low temperature.  相似文献   

9.
Borane adducts of bis(di-tert-butylphosphanyl)amine ( 1a ) and bis(di-tert-butylarsino)amine ( 1b ) are reported. Based on quantum-chemical investigations in combination with experimental results, it is demonstrated that the tautomerism known for tBu2P-N(H)-PtBu2 ( 1a ), can be observed for the mono adduct tBu2P-N(H)-P(BH3)tBu2 ( 2a ) as well, whereas for the corresponding arsenic compound 2b only one stable isomer is found. The bis-borane adduct tBu2(BH3)As-N(H)-As(BH3)tBu2 ( 3b ) is a rare example of a structurally characterized, tertiary arsine borane adduct, which can be directly compared with the corresponding phosphorus compound tBu2(BH3)P-N(H)-P(BH3)tBu2 ( 3a ). Deprotonation of mixtures containing 2a by nBuLi leads to the lithium-containing coordination polymer 4a , in which the actual chain consists only of non-carbon atoms.  相似文献   

10.
Catalysts for the oxidation of NH3 are critical for the utilization of NH3 as a large‐scale energy carrier. Molecular catalysts capable of oxidizing NH3 to N2 are rare. This report describes the use of [Cp*Ru(PtBu2NPh2)(15NH3)][BArF4], (PtBu2NPh2=1,5‐di(phenylaza)‐3,7‐di(tert‐butylphospha)cyclooctane; ArF=3,5‐(CF3)2C6H3), to catalytically oxidize NH3 to dinitrogen under ambient conditions. The cleavage of six N?H bonds and the formation of an N≡N bond was achieved by coupling H+ and e? transfers as net hydrogen atom abstraction (HAA) steps using the 2,4,6‐tri‐tert‐butylphenoxyl radical (tBu3ArO.) as the H atom acceptor. Employing an excess of tBu3ArO. under 1 atm of NH3 gas at 23 °C resulted in up to ten turnovers. Nitrogen isotopic (15N) labeling studies provide initial mechanistic information suggesting a monometallic pathway during the N???N bond‐forming step in the catalytic cycle.  相似文献   

11.
Pure nanoparticle ammonia borane (NH3BH3, AB) was first prepared through a solvent‐free, ambient‐temperature gas‐phase combination of B2H6 with NH3. The prepared AB nanoparticle exhibits improved dehydrogenation behavior giving 13.6 wt. % H2 at the temperature range of 80–175 °C without severe foaming. Ammonia diborane (NH3BH2(μ‐H)BH3, AaDB) is proposed as the intermediate in the reaction of B2H6 with NH3 based on theoretical studies. This method can also be used to prepare pure diammoniate of diborane ([H2B(NH3)2][BH4], DADB) by adjusting the ratio and concentration of B2H6 to NH3.  相似文献   

12.
Borohydrides have been recently hightlighted as prospective new materials due to their high gravimetric capacities for hydrogen storage. It is, therefore, important to under-stand the underlying dehydrogenation mechanisms for further development of these ma-terials. We present a systematic theoretical investigation on the dehydrogenation mecha-nisms of theMg2(BH4)2(NH2)2 compounds. We found that dehydrogenation takes place most likely via the intermolecular process, which is favorable both kinetically and thermo-dynamically in comparison with that of the intramolecular process. The dehydrogenation of Mg2(BH4)2(NH2)2 initially takes place via the direct combination of the hydridic H in BH4- and the protic H in NH2-, followed by the formation of Mg-H and subsequent ionic recombination of Mg-Hδ- …Hδ+N.  相似文献   

13.
Density functional theory (DFT) calculations have been performed to investigate the interfacial interactions of ionic liquids (ILs) on the α- and β-phases of phosphorene (P) and arsenene (As). Nine representative ILs based on the combinations of 1-ethyl-3-methylimidazolium ([EMIM]+), N-methylpyridinium ([MPI]+), and trimethylamine ([TMA]+) cations paired to tetrafluoroborate ([BF4]), trifluoromethanesulfonate ([TFO]), and chloridion (Cl) anions were used as adsorbates on the 2D P and As nanosheets with different phases to explore the effect of IL adsorption on the electronic and optical properties of 2D materials. The calculated structure, adsorption energy, and charge transfer suggest that the interaction between ILs and P and As nanosheets is dominated by noncovalent forces, and the most stable adsorption structures are characterized by the simultaneous interaction of the cation and anion with the surface, irrespective of the types of ILs and surfaces. Furthermore, the IL adsorption leads to the larger change in the electronic properties of β-phase P and As than those of their α-phase counterparts, which demonstrates that the adsorption properties are not only related to the chemical elements, but also closely related to the phase structures. The present results provide insight into the further applications of ILs and phosphorene (arsenene) hybrid materials.  相似文献   

14.
Olga P. Kryatova 《Tetrahedron》2004,60(21):4579-4588
Three complexes of benzo-15-crown-5 (B15C5) with protonated primary amines [PhCH2NH3(B15C5)](ClO4), [p-C6H4(CH2NH3)2(B15C5)2](ClO4)2, and [(CH2)4(NH3)2(B15C5)2](SCN)2 were isolated and studied in acetonitrile solutions by NMR, and in the solid state by X-ray crystallography. In all complexes, one B15C5 molecule was bound with each R-NH3+ moiety with characteristic small separation of 1.84-1.86 Å between the nitrogen of the R-NH3+ group and the O5 mean plane of the crown residue. No sandwich-type complexes with a 1:2 R-NH3+/B15C5 stoichiometry were observed. Binding affinities of B15C5 in acetonitrile were similar for all ammonium cations studied: K1=550±10 M−1 for [PhCH2NH3]+; K1=1100±100 and K2=400±30 M−1 for [p-C6H4(CH2NH3)2]2+; and K1=1100±100 and K2=300±30 M−1 for [H3N(CH2)4NH3]2+. The complexation is primarily enthalpy-driven (ΔH°=−4.9±0.5 kcal/mol, ΔS°=−3.8±1.0 eu for PhCH2NH3+-B15C5), as determined by variable temperature 1H NMR titrations.  相似文献   

15.
The spontaneous decarboxylation of 0.5 m aqueous α‐alanine solutions as a function of pH (1–9 at 320°C, where neutrality is approximately 6) was determined with a flow reactor at 280–330°C and 275 bar by FT‐IR spectroscopy. The kinetics for the cationic and anionic forms have not been previously reported. The rate constants for the cationic form [CH3(NH3+)CHCO2H], the anionic form [CH3(NH2)CHCO2?], and the zwitterion form [CH3(NH3+)CHCO2?] were obtained and followed the first‐order rate law. The rate of decarboxylation of the zwitterion is three times greater than that of the cationic and anionic forms in the temperature and pH ranges of study. The corresponding Arrhenius parameters were determined and compared with previously reported data. The addition of KCl (1 and 2 m) at the natural pH of α‐alanine resulted in a reduction of the decarboxylation rate, suggesting that the transition state is less polar than the zwitterion and/or that the activity of the zwitterion has been reduced. The α‐alanine solution is therefore somewhat more robust in solutions of high ionic strength, such as seawater, than it is in pure water. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 271–277, 2002  相似文献   

16.
The solubility of carbon dioxide in a series of 1-(2-hydroxyethyl)-3-methylimidazolium ([hemim]+) based ionic liquids (ILs) with different anions, viz. hexafluorophosphate ([PF6]?), trifluoromethanesulfonate ([OTf]?), and bis-(trifluoromethyl)sulfonylimide ([Tf2N]?) at temperatures ranging from 303.15 K to 353.15 K and pressures up to 1.3 MPa were determined. The solubility data were correlated using the Krichevsky–Kasarnovsky equation and Henry’s law constants were obtained at different temperatures. Using the solubility data, the partial molar thermodynamic functions of solution such as Gibbs free energy, enthalpy, and entropy were calculated. Comparison showed that the solubility of CO2 in the ILs studied follows the same behaviour as the corresponding conventional 1-ethyl-3-methylimidazolium ([emim]+) based ILs with the same anions, i.e. [hemim][NTf2] > [hemim][OTf] > [hemim][PF6] > [hemim][BF4].  相似文献   

17.
Geminal dicationic ionic liquids (ILs), a new category of IL family, have been developed recently and found to possess unique properties compared to conventional monocationic ILs. To establish a basis for understanding their novel properties, we studied the geometrical and electronic structures of the dication ([(mim)C3(mim)]2+) and the ion pair ([(mim)C3(mim)]2+-2Br) in the geminal dicationic IL 1,3-bis[3-methylimidazolium-yl]propane bromide by performing density functional theory calculations. The geometrical structures and relative stabilities for the dication and the ion pair are discussed, and their electronic properties are analyzed in detail. The intrinsic interaction between the dication and Br anions in the most stable conformer was investigated by performing the natural bond orbital analyses. Results for the dication and the ion pair are compared with those of the corresponding monocation ([C4mim]+) and ion pair ([C4mim]+-Br). 1H NMR spectroscopy for the most stable ion pair has been calculated and the general trend is found to be in fairly agreement with the experimental data.  相似文献   

18.
Reactions of bis(phosphinimino)amines LH and L′H with Me2S ? BH2Cl afforded chloroborane complexes LBHCl ( 1 ) and L′BHCl ( 2 ), and the reaction of L′H with BH3 ? Me2S gave a dihydridoborane complex L′BH2 ( 3 ) (LH=[{(2,4,6‐Me3C6H2N)P(Ph2)}2N]H and L′H=[{(2,6‐iPr2C6H3N)P(Ph2)}2N]H). Furthermore, abstraction of a hydride ion from L′BH2 ( 3 ) and LBH2 ( 4 ) mediated by Lewis acid B(C6F5)3 or the weakly coordinating ion pair [Ph3C][B(C6F5)4] smoothly yielded a series of borenium hydride cations: [L′BH]+[HB(C6F5)3]? ( 5 ), [L′BH]+[B(C6F5)4]? ( 6 ), [LBH]+[HB(C6F5)3]? ( 7 ), and [LBH]+[B(C6F5)4]? ( 8 ). Synthesis of a chloroborenium species [LBCl]+[BCl4]? ( 9 ) without involvement of a weakly coordinating anion was also demonstrated from a reaction of LBH2 ( 4 ) with three equivalents of BCl3. It is clear from this study that the sterically bulky strong donor bis(phosphinimino)amide ligand plays a crucial role in facilitating the synthesis and stabilization of these three‐coordinated cationic species of boron. Therefore, the present synthetic approach is not dependent on the requirement of weakly coordinating anions; even simple BCl4? can act as a counteranion with borenium cations. The high Lewis acidity of the boron atom in complex 8 enables the formation of an adduct with 4‐dimethylaminopyridine (DMAP), [LBH ? (DMAP)]+[B(C6F5)4]? ( 10 ). The solid‐state structures of complexes 1 , 5 , and 9 were investigated by means of single‐crystal X‐ray structural analysis.  相似文献   

19.
The first Al‐based amidoborane Na[Al(NH2BH3)4] was obtained through a mechanochemical treatment of the NaAlH4–4 AB (AB=NH3BH3) composite releasing 4.5 wt % of pure hydrogen. The same amidoborane was also produced upon heating the composite at 70 °C. The crystal structure of Na[Al(NH2BH3)4], elucidated from synchrotron X‐ray powder diffraction and confirmed by DFT calculations, contains the previously unknown tetrahedral ion [Al(NH2BH3)4]?, with every NH2BH3? ligand coordinated to aluminum through nitrogen atoms. Combination of complex and chemical hydrides in the same compound was possible due to both the lower stability of the Al?H bonds compared to the B?H ones in borohydride, and due to the strong Lewis acidity of Al3+. According to the thermogravimetric analysis–differential scanning calorimetry–mass spectrometry (TGA–DSC–MS) studies, Na[Al(NH2BH3)4] releases in two steps 9 wt % of pure hydrogen. As a result of this decomposition, which was also supported by volumetric studies, the formation of NaBH4 and amorphous product(s) of the surmised composition AlN4B3H(0–3.6) were observed. Furthermore, volumetric experiments have also shown that the final residue can reversibly absorb about 27 % of the released hydrogen at 250 °C and p(H2)=150 bar. Hydrogen re‐absorption does not regenerate neither Na[Al(NH2BH3)4] nor starting materials, NaAlH4 and AB, but rather occurs within amorphous product(s). Detailed studies of the latter one(s) can open an avenue for a new family of reversible hydrogen storage materials. Finally, the NaAlH4–4 AB composite might become a starting point towards a new series of aluminum‐based tetraamidoboranes with improved hydrogen storage properties such as hydrogen storage density, hydrogen purity, and reversibility.  相似文献   

20.
The phosphino-substituted sulphur diimide, S(NPtBu2)2, reacts with the trinuclear osmium clusters Os3(CO)11(NCMe) and H2Os3(CO)10 with cleavage of one of the NS bonds to give the cluster compounds Os3(CO)11[PtBu2(NH2)] (I) and HOs3(CO)9[PtBu2N(H)S] (II), respectively. In the solid state, I contains a closed Os3 triangle with the phosphine ligand bonded equatorially to an osmium atom through the phosphorus. In solution intramolecular dynamic processes are observed which are explained by carbonyl migration and pseudoration mechanisms. The osmium cluster II, in the solid state, forms an irregular Os3 triangle which is bridged by a [PtBu2N(H)S] system, and the longest edge of which is bridged by a μ2-hydride. In contrast to I, molecule II is relatively rigid in solution; only pseudorotations are observed as dynamic phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号