首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of PEDOT:PSS film,and thus the as-formed PEDOT:PSS/HPSA bilayer film was successfully used as a transparent electrode for ITO-free polymer solar cells(PSCs).Under the optimized concentration of HPSA(0.2 mol L~(-1)),the PEDOT:PSS/HPSA bilayer film has a conductivity of 1020 S cm~(-1),which is improved by about 1400 times of the pristine PEDOT:PSS film(0.7 S cm~(-1)).The sheet resistance of the PEDOT:PSS/HPSA bilayer film was 98Ωsq~(-1),and its transparency in the visible range was over 80%.Both parameters are comparable to those of ITO,enabling its suitability as the transparent electrode.According to atomic force microscopy(AFM),UV-Vis and Raman spectroscopic measurements,the conductivity enhancement was resulted from the removal of PSS moiety by methanol solvent and HPSA-induced segregation of insulating PSS chains along with the conformation transition of the conductive PEDOT chains within PEDOT:PSS.Upon applying PEDOT:PSS/HPSA bilayer film as the transparent electrode substituting ITO,the ITO-free polymer solar cells(PSCs)based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl C71-butyric acid methyl ester(PC_(71)BM)(PCDTBT:PC_(71)BM)active layer exhibited a power conversion efficiency(PCE)of 5.52%,which is comparable to that of the traditional ITO-based devices.  相似文献   

2.
黄鹏  元利刚  李耀文  周祎  宋波 《物理化学学报》2018,34(11):1264-1271
p-i-n型的钙钛矿太阳能电池中,聚3, 4-乙烯二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)作为最常用的空穴传输层(HTL)材料之一,由于其存在着吸湿性强以及能级与钙钛矿层不匹配等缺点,限制了它的应用。基于此,本文拟采用将左旋多巴(DOPA)和N, N-二甲基亚砜(DMSO)共同掺杂于PEDOT:PSS作为HTL的简单方法制备高性能p-i-n型钙钛矿太阳能电池。研究结果表明,DOPA和DMSO共掺杂PEDOT:PSS可以有效的调节HTL的能级并提高其导电性,器件的能量转化效率由13.35%显著提高到了17.54%。进一步研究发现,相比于未掺杂或单一掺杂的PEDOT:PSS,在DOPA和DMSO共掺杂的PEDOT:PSS上更有利于生长大尺寸、高结晶度的钙钛矿晶体;同时稳态/瞬态荧光和交流阻抗测试表明器件的内部载流子分离和传输更加有效。  相似文献   

3.
Abstract

The conductivity of poly(3,4‐ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) film can be enhanced by more than two orders in magnitude by adding a compound with two or more polar groups, such as ethylene glycol (EG), meso‐erythritol (IUPAC name: 1,2,3,4‐tetrahydroxybutane), or 2‐nitroethanol, into the PEDOT:PSS aqueous solution. The mechanism of the increase in conductivity for PEDOT:PSS has been studied using Raman spectroscopy and atomic force microscope (AFM). Here we propose that the change in conductivity is due to the conformational change of PEDOT chains in the film. In untreated PEDOT:PSS films, coil, linear, or expanded‐coil conformations of the PEDOT chains may be present. In treated PEDOT:PSS films, the linear or expanded‐coil conformations may becomes the dominant form for PEDOT chains. This conformational change results in the enhancement of charge‐carrier mobility in the film and leads to enhanced conductivity. The high‐conductivity PEDOT:PSS film is ideal as the electrode for polymer optoelectronic devices. In this article, we report on the fabrication of polymer light‐emitting diodes (PLEDs) and photovoltaic cells (PVs) made using a highly conductive form of PEDOT:PSS as anode, and we demonstrate its performance relative to that of similar device using indium‐tin oxide (ITO) as the anode.  相似文献   

4.
A green and facile method has been developed for the room temperature and aqueous solution preparation of NiOx film as anode buffer layers for polymer solar cells (PSCs). The NiOx buffer layer is prepared simply by spin-coating nickel acetylacetonate precursor-based aqueous solution onto ITO substrate at room temperature in air. UV-ozone post-treatment promotes the formation of dipolar NiOOH species on the film surface, resulting in the anode buffer layer with suitable work function. PSCs have been fabricated with the device structure of ITO/NiOx/photoactive layer/PFN/Al. The power conversion efficiencies of the PSCs based on PTB7:PC71BM blends (8.43%) and P3HT:PC71BM blends (3.04%) with NiOx anode buffer layer are comparable to those with the commonly used PEDOT:PSS anode buffer layer. In addition, the devices made with NiOx buffer layer exhibit much better air stability than those with PEDOT:PSS. These results indicate that the water solution processed NiOx film at room temperature in air is a promising anode buffer layer for efficient and stable PSCs. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 747–753  相似文献   

5.
The small organic molecular Dioctylbenzothienobenzothiophene (C8‐BTBT) has been explored as hole transport material (HTM) to replace PEDOT:PSS in inverted perovskite solar cells (PVSCs). MAPbI3 perovskite films depositd onto C8‐BTBT are smooth and uniform, with negligible residual of PbI2 and large grain size even larger than 1 μm. Our champion C8‐BTBT based devices reached a high power conversion efficiency (PCE) of 15.46% with marginal hysteresis, much higher than that of 11.50% achieved using PEDOT:PSS. Besides, devices adopting C8‐BTBT as substrate show superior stability compared with the PEDOT:PSS based devices when stored under ambient conditions with a relative humidity of (25±5)%.  相似文献   

6.
在基于钙钛矿/富勒烯平面异质结的钙钛矿太阳电池中,PEDOT:PSS是最常使用的空穴传输材料. 但PEDOT:PSS呈酸性,会腐蚀金属氧化物透明电极,使器件的电极界面稳定性欠佳. 本文将高功函的氧化钨(WOx)插入到PEDOT:PSS和FTO之间,形成WOx/PEDOT:PSS复合空穴传输层,这样既可以避免PEDOT:PSS与FTO直接接触,提高器件的稳定性,又可以进一步降低电极界面的接触势垒,从而提升器件的性能. 作者研究了复合传输层对透光率、钙钛矿形貌、钙钛矿结晶、光伏性能及器件稳定性的影响. 基于WOx/PEDOT:PSS复合空穴传输层的电池效率可以达到12.96%,比单纯的PEDOT:PSS的电池效率(10.56%)提升了22.7%,同时器件的稳定性也得到大幅改善.  相似文献   

7.
Lewis-base polymers have been widely utilized as additives to act as a template for the perovskite nucleation/crystal growth and passivate the under-coordinated Pb2+ sites.However,it is uncovered in this work that the polymer on the perovskite grain boundaries would significantly hinder the charge transport due to its low conductivity,which brings about free carrier recombination and photocurrent losses.To circumvent this issue while fully exploiting the benefits of polymers in passivating the trap states in perovskite,we incorporate highly conductive multiwall carbon nanotubes(CNTs) with Lewis-base polymers as coadditives in the perovskite film.Functionalizing the CNTs with-COOH group enables a selective hole-extraction and charge transport from perovskite to the hole transporting materials(HTM).By studying the charge transporting and recombination dynamics,we revealed the individual role of the polymer and CNTs in passivating the trap states and facilitating the charge transport,respectively.As a result,the perovskite solar cells(PSCs) with polymer-CNTs composites exhibit an impressive PCE of 21.7% for a small-area device(0.16 cm2) and 20.7% for a large-area device(1.0 cm2).Moreover,due to the superior mechanical flexibility of both polymer and CNTs,the polymer-CNTs composites incorporation in the perovskite film encourages the fabrication of flexible PSCs(f-PSCs) with an impressive PCE of 18.3%,and a strong mechanical durability by retaining 80%of the initial PCE after 1,000 times bending.In addition,we proved that the selection criteria of the polymers can be extended to other long-chain Lewis-base polymers,which opens new possibilities in design and synthesis of inexpensive material for this tactic towards the fabrication of high performance large-area PSCs and f-PSCs.  相似文献   

8.
王伟国  白天  薛高飞  叶美丹 《电化学》2021,27(2):216-226
Spiro-OMeTAD是钙钛矿型太阳能电池中应用最广泛的空穴传输材料,它本身的空穴传输率很低,需要氧化之后才能满足高效率太阳能电池器件的要求.然而,Spiro-OMeTAD在空气中的氧化时间较长,同时空气中的水分会造成器件效率的下降以及器件质量不稳定等不良后果.基于此,我们通过一步法制备CsPbIBr2无机钙钛矿太阳...  相似文献   

9.
陈红征 《高分子科学》2014,32(4):395-401
Stable aqueous amino-grafted silicon nanoparticles(SiNPs-NH2) were prepared via one-pot solution method. By grafting amino groups on the particle surface, the dispersion of SiNPs in water became very stable and clear aqueous solutions could be obtained. By incorporating SiNPs-NH2 into the hole transport layer of poly(3,4-ethylenedioxythiophene)/polystyrene sulfonic acid(PEDOT:PSS), the performance of polymer solar cells composed of poly[2-methoxy,5-(2'-ethylhexyloxy)-1,4-phenylene vinylene](MEH-PPV):[6,6]-phenyl-C61-butyric acid methyl ester(PCBM) as active layer can be improved. SiNPs-NH2 are dispersed uniformly in the PEDOT:PSS solution and help form morphologies with small-sized domains in the PEDOT:PSS film. SiNPs-NH2 serve as screens between conducting polymer PEDOT and ionomer PSS to improve the phase separation and charge transport of the hole transport layer. As a result, the sheet resistance of PEDOT:PSS thin films is decreased from(93 ± 5) × 105 to(13 ± 3) × 105 ?/□. The power conversion efficiency(PCE) of polymer solar cells was thus improved by 9.8% for devices fabricated with PEDOT:PSS containing 1 wt% of SiNPs-NH2, compared with the devices fabricated by original PEDOT:PSS.  相似文献   

10.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a widely used hole transporting layer (HTL) in organic solar cells (OSCs), but its acidity severely reduces the stability of devices. Until now, very few HTLs were developed to replace PEDOT:PSS toward stable and high-performance OSCs. Herein, a new cobalt-lanthanum (Co-La) inorganic system was reported as HTL to show a high conversion efficiency (PCE) of 18.82 %, which is among the top PCEs in binary OSCs. Since electron-rich outer shell of La atom can interact with Co atom to form charge transfer complex, the work function and conductivity of the Co-La system could be simultaneously enhanced compared to Co or La-based HTLs. This Co-La system could also be applied into other OSCs to show high performance. All these results demonstrate that binary Co-La systems as HTL can efficiently tackle the issue in hole transporting and show powerful application in OSCs to replace PEDOT:PSS.  相似文献   

11.
The intrinsic defects in perovskite film can serve as non-radiative recombination center to limit the performance and stability of metal halide perovskite solar cells (PSCs). The additive engineering in perovskite film is always applied to produce high-efficiency PSCs in recent years. Here, a typical donor-acceptor (D−A) structured aggregation-induced emission (AIE) molecule tetraphenylethene-2-dicyano-methylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TPE-TCF) was introduced into perovskite film. The D−A structure of TPE-TCF molecule provided additional charge transfer channels, contributing to transporting electron of TPE-TCF-based device. The cyano (C≡N) of TPE-TCF can interact with the uncoordinated Pb to from a relatively stable intermediate, PbI2⋅TPE-TCF, resulting in the slower crystal growth, reduced the defects at the grain boundaries and suppressed carrier recombination. As a consequence, the power conversion efficiency (PCE) of TPE-TCF-modified PSCs achieved a remarkably enhanced from 15.63 to 19.66 % with negligible hysteresis, which was prominent in methylammonium lead iodide-based devices fabricated under ambient condition. Furthermore, the PSCs modified by AIE molecule possessed an outstanding stability and maintain about 86 % of the initial PCE after 300 h storage in air at 25–35 °C with a high relative humidity (RH) of ≈85 %. This work suggests that incorporating AIE molecule into perovskite is a promising strategy for facilitating high-performance PSCs commercialization in ambient environment without glovebox.  相似文献   

12.
Tang  Haoran  Liu  Zixian  Hu  Zhicheng  Liang  Yuanying  Huang  Fei  Cao  Yong 《中国科学:化学(英文版)》2020,63(6):802-809
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS) is one of the most widely used hole transporting materials in organic solar cells(OSCs). Multiple strategies have been adopted to improve the conductivity of PEDOT:PSS, however,effective strategy that can optimize the conductivity, work function, and surface energy simultaneously to reach a better energy alignment and interface contact is rare. Here, we demonstrate that oxoammonium salts(TEMPO~+X~-) with different counterions can act as facile and novel dopants to realize secondary doping of PEDOT:PSS. The effective charge transfer process achieved between TEMPO~+X~- and PEDOT:PSS results in enhanced carrier density and improved conductivity of PEDOT:PSS. Moreover,different counterions of TEMPO~+X~- can tune the work function and surface energy of PEDOT:PSS, enabling improved device performances. The resulting device with PM6:Y6 as the active layer shows a high power conversion efficiency(PCE) over 16%.Moreover, this doping strategy can also be applied to other conjugated polymers such as poly(3-hexylthiophene). This work provides a promising strategy to tune the properties of conjugated polymers through doping, thus effectively boosting the performance of organic solar cells.  相似文献   

13.
Graphene oxide (GO) materials have emerged as a promising alternative for hole transport layer (HTL) in polymer solar cells (PSCs) due to their unique structures and properties. However, insulating properties and eco-contaminative production of GO still need to be solved. Here, we report on the preparation of GO through an improved Hummers method without using NaNO3, which is an eco-friendly option because it avoids the emissions of NO2 and N2O4 toxic gases. Subsequently, the GO as HTL in PSCs is reduced by simple heat treatment of different temperatures in air, and the performance of devices is obviously improved. The FT-IR and XPS spectra show oxygenated functional groups in GO thin films are gradually removed with the increase of annealing temperature, which restores sp2 hybridized graphitic structure, and makes the GO thin films more conducive to the charge transfer. The highest power conversion efficiency of PSCs based on the P3HT: PC71BM system with GO as HTL is 3.39%, which approaches that of PSCs with PEDOT: PSS as HTL (3.41%). Moreover, the devices with annealed GO as HTL have better stability compared to devices with PEDOT: PSS.  相似文献   

14.
Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted significant attention owing to their high absorption coefficient and ambipolar charge transport properties. With only several years of development, the power conversion efficiency (PCE) has increased from 3.8% to 22.7%. In general, PSCs have two types of structural architecture: mesoporous and planar. The latter possesses higher potential for commercialization due to its simpler structure and fabrication process, especially the inverted planar structure, which possesses negligible hysteresis. In an inverted PSC, the electron transport materials (ETM) are deposited on a perovskite film. Only a few ETMs can be used for inverted PSCs as the perovskite film is easily damaged by the solvent used to dissolve the ETM. Furthermore, the energy levels of the ETM should be well aligned with that of the perovskites. Normally it is difficult to use inorganic ETMs as they require high temperatures for the annealing process to improve the electron conductivity; the perovskite film cannot sustain these high temperatures. To date, the fullerene derivative, [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), is the most commonly used organic ETM for high efficiency inverted planar PSCs. However, the high manufacturing cost due to its complex synthesis retards the industrialization of the PSCs. Here, we introduce a fullerene pyrrolidine derivative, N-methyl-2-pentyl-[60]fullerene pyrrolidine (NMPFP), synthesized via the Prato reaction of C60 directly with cheap hexanal and sarcosine. Then the NMPFP electron transport layer (ETL) was prepared by a simple solution process. The properties of the resulting NMPFP ETLs were characterized using UV-Vis absorption spectroscopy, cyclic voltammetry measurements, atomic force microscopy, and conductivity test. From the results of the UV-Vis absorption spectroscopy and cyclic voltammetry measurements, the LUMO level of NMPFP ETL was calculated to be 0.2 eV higher than that of the PCBM ETL. This contributes to a higher open-circuit photovoltage. In addition, the NMPFP film presented higher conductivity than the PCBM film. Thus, the photo-generated charge carriers in the perovskite films should be transported more efficiently to the NMPFP electron transport layer (ETL) than to the PCBM ETL. This was confirmed by the results of the steady-state photoluminescence spectroscopy. Finally, the NMPFP as an alternative low-cost ETL was employed in an inverted planar PSC to evaluate the device performance. The device made with the NMPFP ETL yielded an efficiency of 13.83% with negligible hysteresis, which is comparable to the PCBM counterpart devices. Moreover, since stability is another important parameter retarding the commercialization of PSCs, the stability of the PCBM and NMPFP base PSCs were investigated and compared. It was found that the NMPFP devices possessed significantly improved stability due to the higher hydrophobicity of the NMPFP. In conclusion, this research demonstrates that NMPFP is a promising ETL to replace PCBM for the industrialization of cheap, efficient and stable inverted planar PSCs.  相似文献   

15.
In this review, PEDOT–PSS is mainly a commercially available PEDOT–PSS, which is a water‐dispersible form of the intrinsically conducting PEDOT doped with the water‐soluble PSS, including its derivatives, copolymers, analogs (PEDOT:PSSs), even their composites via the chemical or physical modification toward the structure of PEDOT and/or PSS. First, we will focus on discussing the scientific importance of PEDOT–PSS in conjunction with its extraordinary properties and broad multidisciplinary applications in organic/polymeric electronics and optoelectronics from the viewpoint of the historical development and the promising application of representative ECPs. Subsequently, versatile film‐forming techniques for the preparation of PEDOT–PSS film electrode were described in details, including common coating approaches and printing techniques, and many emerging preparative methods were mentioned. Then challenges (e.g., conductivity, stability in Water, adhesion to substrate electrode) of PEDOT–PSS film electrode for devices under the high humidity/watery circumstances, especially electrochemical devices are discussed. Fourth, we take PEDOT–PSS film electrode for a relatively new application in sensors as an example, mainly summarized advances in the development of various sensors based on PEDOT–PSSs and their composites in combination with its preparative methods and extraordinary properties. Finally, we give the outlook of PEDOT–PSS for possible applications with the emphasis on PEDOT–PSS film electrode for electrochemical devices, including sensors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1121–1150  相似文献   

16.
Cui  Huiqin  Song  Wei  Fanady  Billy  Peng  Ruixiang  Zhang  Jianfeng  Huang  Jiaming  Ge  Ziyi 《中国科学:化学(英文版)》2019,62(4):500-505
Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonic acid)(PEDOT:PSS) has been explored to fabricate flexible and stretchable conductors. Generally, PEDOT:PSS transparent anodes are prepared by spin-coating method. In this article, we adopt a method by dropping PEDOT:PSS aqueous solution on the PET plastic substrate to fabricate flexible electrodes. Compared with spin coating, drop-coating is simple and cost-effective with large-area fabrications. Through this method, we fabricated highly transparent conductive electrodes and systematically studied their electrical, optical, morphological and mechanical properties. With dimethyl sulfoxide/methanesulfonic acid(DMSO/MSA) treated PEDOT:PSS electrode,bendable devices based on non-fullerene system displayed an open-circuit voltage of 0.925 V, a fill factor of 70.74%, and a high power conversion efficiency(PCE) of 10.23% under 100 mW cm~(-2) illumination, which retained over 80% of the initial PCE value after 1000 bending cycles. Based on the findings, drop-coated PEDOT:PSS electrodes exhibited high suitability for the development of large-area and high-efficiency printed solar cell modules in the future.  相似文献   

17.
We have investigated the electrical transport properties of poly(3,4‐ethylenedioxythiophen)/poly(4‐styrene‐sulfonate) (PEDOT:PSS) with PEDOT‐to‐PSS ratios from 1:1 to 1:30. By combining impedance spectroscopy with thermoelectric measurements, we are able to independently determine the variation of electrical conductivity and charge carrier density with PSS content. We find the charge carrier density to be independent of the PSS content. Using a generalized effective media theory, we show that the electrical conductivity in PEDOT:PSS can be understood as percolation between sites of highly conducting PEDOT:PSS complexes with a conductivity of 2.3 (Ωcm)?1 in a matrix of excess PSS with a low conductivity of 10?3 (Ω cm)?1. In addition to the transport properties, the thermoelectric power factors and Seebeck coefficients have been determined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

18.
Current density-voltage(J-V) hysteresis issue caused by unbalanced charge transport has greatly limited the improvement of power conversion efficiency(PCE) of halide perovskite solar cells(PSCs). Herein, hollow TiO2 mesoporous electron transport layer(ETL) was used to fabricate PSCs. The structure-dependent charge collection as well as its effect on PCE and hysteresis impactor(HI) of PSC were investigated. The results demonstrate that TiO2 hollow spheres in a size of around 50 nm (HS-50) can form a high quality perovskite/ETL interface with a less trap density. Moreover, the hollow TiO2 with the thin shell can help promote the extraction of electrons from perovskite layer to ETL, so as to reduce the charge accumulation and recombination at the perovskite/ETL interface and alleviate the hysteresis behavior. As a result, PSCs with HS-50 TiO2 delivered a champion PCE of 16.81% with a small HI of 0.0297, indicating a better performance than the commercial P25(PCE of 15.87%, HI of 0.2571).  相似文献   

19.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water‐solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3‐glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross‐link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 814–820  相似文献   

20.
We developed a simple and facile method of producing a stable aqueous suspension of reduced graphene oxide (RGO) nanosheets through the chemical reduction of graphene oxide in the presence of a conducting polymer dispersant, poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). This approach involves the cooperative interactions of strong π- π interactions between a two-dimensional graphene sheet and a rigid backbone of PEDOT and the intermolecular electrostatic repulsions between negatively charged PSS bound on the RGO sheets, which impart the colloidal stability of the resulting hybrid nanocomposite of RGO/PEDOT. Moreover, our one-step solution-based method allows preserving the intrinsic chemical and electronic properties of both components, yielding a hybrid film of RGO nanosheets of high conductivity of 2.3 kΩ/sq with a transmittance of 80%. By taking advantage of conducting network structure of conducting polymers which provides an additional flexibility and mechanical stability of RGO nanosheets, we demonstrate the potential application of hybrid RGO/PEDOT as highly flexible and transparent electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号