首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
金属有机骨架(MOFs)具有较高的比表面积,丰富的金属/有机物种,较大的孔体积以及结构和成分可调节的特性,因此在太阳能燃料生产和污染物的光降解领域具有广泛的应用.根据其结构特点,研究者们主要从有机配体和孔道结构两方面对MOFs进行调控:(1)对有机配体进行修饰,如将杂原子、羟基、卤素原子、金属离子、生物大分子等引入MO...  相似文献   

2.
《中国化学快报》2021,32(10):2975-2984
Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of MOFs and the latest research progress of MOFs-based photocatalysts to degrade organic pollutants in water, such as organic dyes, pharmaceuticals and personal care products, and other organic pollutants. The main characteristics of different synthesis methods of MOFs, the main design strategies of MOFs-based photocatalysts, and the excellent performance of photocatalytic degradation of organic pollutants are summarized. At the end of this paper, the practical application of MOFs, the current limitations of MOFs, the synthesis methods of MOFs, and the future development trend of MOFs photocatalysts are explained.  相似文献   

3.
金属有机骨架(MOFs)材料因具有无机和有机的杂合性质、高度有序的多孔性、结构可修饰性、比表面积大和孔隙率高等特点,在催化领域具有广阔的应用前景。本文从氢能的开发利用角度出发,在纯MOFs、MOFs复合及衍生材料三个方面对近十年来过渡金属MOFs基催化剂在电解水制氢方面的重要研究进展进行了综述,着重针对材料的合成进行了探讨,以及在基础研究和产业应用的角度指出当前过渡金属MOFs基制氢催化剂面临的挑战和机遇,对其应用前景进行展望。  相似文献   

4.
Artificial nanoenzymes with enzyme-like catalytic activity have gradually become an alternative to natural enzymes due to their low production cost, high stability, and good tolerance. In recent years, various enzyme mimics have emerged with the rapid development of nano-teclnology. Metal-organic frameworks(MOFs) are a novel class of porous inorganic-organic hybrid materials made from metal ions/clusters and organic ligands, and MOFs-based nanozymes show great prospect in biosensing, biocatalysis, biomedical imaging, and therapeutic applications, due to unique properties, such as high specific surface area, high porosity, tunable morphology, and excellent biocatalytic properties. In this paper, the recent progresses concerning MOFs-based nanozymes are systematically summarized, including the synthesis, design strategies and related applications, which are divided into two major categories, namely, MOFs structured nanoenzymes and MOFs composite structured nanoenzymes. Meanwhile, the applications of various classifications of MOFs research are introduced. At the end, current challenges and future perspectives of MOFs-based nanozymes are also discussed. It is highly expected that this review on this important area can provide a meaningful guidance for tumor therapy, biosensing and other aspects.  相似文献   

5.
Metal–organic frameworks (MOFs) are an emerging class of porous nanomaterials that have opened new research possibilities. The inherent characteristics of MOFs such as their large surface area, high porosity, tunable pore size, stability, facile synthetic strategies and catalytic nature have made them promising materials for enormous number of applications, including fuel storage, energy conversion, separation, and gas purification. Recently, their high potential as ideal platforms for biomolecule immobilization has been discovered. MOF-enzyme-based materials have attracted the attention of researchers from all fields with the expansion of MOFs development, paving way for the fabrication of bioelectrochemical devices with unique characteristics. MOFs-based bioelectrodes have steadily gained interest, wherein MOFs can be utilized for improved biomolecule immobilization, electrolyte membranes, fuel storage, biocatalysis and biosensing. Likewise, applications of MOFs in point-of-care diagnostics, including self-powered biosensors, are exponentially increasing. This paper reviews the current trends in the fabrication of MOFs-based bioelectrodes with emphasis on their applications in biosensors and biofuel cells.

Metal–organic frameworks based bioelectrodes.  相似文献   

6.
The controllable synthesis of one-dimensional(1D) structural morphology of metal-organic frameworks(MOFs) is significant for its application in catalysis,sense and gas separation.In this communication,we report a simple and moderate synthetic strategy to obtain uniform HKUST-1 nanobelts(NBs) by using copper nanowires(Cu NWs) as a metal source as well as a template.The control experiments showed that synergy between metal dissolution rate and crystal formation plays a key role in the formation of nanobelts.Our study represents an attractive synthetic strategy of 1 D MOFs-based material for applications.  相似文献   

7.
In recent years, metal oxide semiconductors have been explored as photocatalysts for the degradation of organic contaminants in water/wastewater. The uniqueness of these oxide materials is in their ability to harness energy in the UV/Vis range, their relative ease of synthesis, low cost, and their general high surface ratio to mass, etc. Thus, these materials have consequently drawn much profound interest in environment applications, particularly pharmaceutical drugs for photocatalytic degradation. Furthermore, the non-toxic nature of most metal oxide semiconductors means they are convenient for water treatment works, resulting in safe drinking water for humans and safe environments for aquatic mammals. Pharmaceuticals are emerging pollutants that are increasingly being found in water systems. They have been detrimental to the human and animal health. In this article, pharmaceutical drugs abatement from water via photocatalysis process using oxide-based advanced metals such as TiO2, ZnO, Fe2O3,WO3, and Bi2WO6 is discussed. Degradation of various drugs at laboratory scale have been assessed and examples cited. Various approaches to metal oxides modifications and synthesis methods to improve degradation efficiency have also been discussed. Effects of experimental/operational parameters in the degradation process have been compiled and compared. Finally, a short preview of degradation of pharmaceuticals pilot scales is also highlighted.  相似文献   

8.
电解水和锌-空气电池(ZABs)技术为解决能源危机、实现碳中和目标开辟了一条新的途径。然而,这些技术的实际应用在很大程度上受到析氢反应(HER)、析氧反应(OER)以及氧还原反应(ORR)缓慢动力学的限制。因此,迫切需要开发高效、稳定的电催化剂有效降低反应过电位,加快电催化反应进程。金属有机骨架(MOFs)由于其灵活可调的组成和精确可控的结构,已成为催化领域研究最广泛的材料之一。本文聚焦于MOFs基电催化剂的制备策略和结构特性,主要介绍它们在电解水和ZABs方面近期的研究进展,并对该领域存在的问题和发展趋势进行了总结和展望。  相似文献   

9.
能源问题一直是关乎人类命运的重要问题,光催化制氢被认为是有望解决这一问题的潜在途径之一.金属有机框架(MOFs)由于其多孔、高比表面积、带隙可调等特性,在光催化制氢方面得到了广泛关注.我们综述了近些年来在金属-有机骨架材料光催化制氢领域的各种改性方法 ,包括修饰有机连接配体、修饰金属中心、金属纳米粒子沉积、染料敏化与其他功能材料结合等.概括了改性后的MOFs光催化制氢性能,指出了MOFs基光催化制氢存在的问题和可能的解决思路,并展望了MOFs基光催化制氢剂的绿色未来.  相似文献   

10.
《中国化学快报》2022,33(8):3869-3872
Here, silica microspheres were decorated with two-dimensional metal–organic frameworks (2D MOFs) nanosheets and ionic liquids, and evaluated as the mixed-mode stationary phase for chromatographic separation. The ionic liquids were used to assist the synthesis of 2D MOFs nanosheets, and also acted as adhesives among the nanosheets and silica. In contrast with the 2D MOFs-based column without ionic liquids and commercial columns, the prepared column exhibited enhanced chromatographic separation performance for partially hydrophilic compounds such as alkaloids, sulfonamides and antibiotics, etc. In addition to excellent chromatographic repeatability and stability, it has also been verified that the composites could be easily and repeatedly prepared. The relative standard deviation of the retention time of the same type of analyte between the three batches of materials was ranging from 0.21% to 1.7%. In short, these results indicated that the synthesized composites were promising separation material for liquid chromatography, which made it possible to broaden the application of 2D MOFs in the field of chromatography.  相似文献   

11.
电解水和锌-空气电池(ZABs)技术为解决能源危机、实现碳中和目标开辟了一条新的途径。然而,这些技术的实际应用在很大程度上受到析氢反应(HER)、析氧反应(OER)以及氧还原反应(ORR)缓慢动力学的限制。因此,迫切需要开发高效、稳定的电催化剂有效降低反应过电位,加快电催化反应进程。金属有机骨架(MOFs)由于其灵活可调的组成和精确可控的结构,已成为催化领域研究最广泛的材料之一。本文聚焦于MOFs基电催化剂的制备策略和结构特性,主要介绍它们在电解水和ZABs方面近期的研究进展,并对该领域存在的问题和发展趋势进行了总结和展望。  相似文献   

12.
Studies on the adsorption and transport of water molecules with oxidized two-dimensional (2 D) carbon materials have attracted increasing interest owing to their wide range of applications, such as sensing, energy conversion, and membrane separation. In this contribution, the interaction between water molecules and oxidized 2 D carbon materials (i.e., graphene oxide and graphdiyne oxide) is discussed, the influence of water adsorption and transport on the physicochemical properties of 2 D carbon materials is presented, and the recent progress on oxidized 2 D carbon material-based proton conduction, electricity generation, water transport, and humidity sensing is highlighted. The opportunities and challenges in these research fields are discussed, especially the structural stability and chemical modification of 2 D carbon materials.  相似文献   

13.
世界能源危机问题和环境问题日益突出,寻找低廉、易得且能够替代化石的清洁能源是目前研究的热点.氢气具有可再生性、安全、高能量密度、环境友好型等优点,因而成为替代化石燃料的首选.在众多途径中,电催化产氢和光催化产氢是目前应用较广且比较成熟的方法,其工艺过程简单、无污染,但由于效率较低或生产成本较高等因素,其大规模应用受到一...  相似文献   

14.
Nanocomposite materials have received much attention from scientists and engineers interested in the detection and photoreduction of CO2 compounds. Their interest is due in large part to the unique properties of these materials, including their high degree of photoactivity, thermal stability, high surface area, and malleability. In the present review, we focus on several nanocomposite types used for the detection and photochemical reduction of CO2: titania-based nanocomposites, chalcogenide-based nanocomposites, LDHs-based nanocomposites, and MOFs-based nanocomposites. More specifically, trends in green synthesis nanocomposites, methods for detecting CO2 compounds, and the photoreduction of those compounds are summarized in this paper. Several modified approaches to nanocomposite materials have been discussed to achieve optimum results. Generally, we find that the presence of functional active groups, doping metal, and other semiconductor materials act as catalysts, significantly enhancing the photoreduction properties of nano-materials. Moreover, we will also discuss additional challenges, especially in regard to large-scale industrial applications. In our discussion, we will highlight the use of nanocomposite-based materials in the detection and photoreduction of CO2. It is hoped that our findings will serve as a reference and inspiration for academic researchers and industrial professionals.  相似文献   

15.
The carbon nanotubes(CNTs) as the emerging materials for organic pollutant removal have gradually become a burgeoning research field.Herein,a mini-review of CNTs-based materials curre ntly studies for organic pollutant elimination is presented.This review summarizes the preparation methods of CNTsbased materials.CNTs-based materials can be used as adsorbents to remove organic pollutants in wastewater.The adsorption mechanisms mainly include surface diffusio n,pore diffusion and adsorption reaction.Most importantly,an in-depth overview of CNTs-based materials currently available in advanced oxidation processes(AOPs) applications for wastewater treatment is proposed.CNTs-based materials can catalyze different oxidants(e.g.,hydrogen peroxide(H_2 O_2),persulfates(PMS/PDS),ozone(O_3) and ferrate/permanganate(Fe(Ⅵ)/Mn(Ⅶ)) to generate more reactive oxygen species(ROS) for organic pollutant elimination.Moreover,the possible reaction mechanisms of removing organic pollutants by CNTs-based materials are summarized systematically and discussed in detail.Finally,application potential and future research directions of CNTs-based materials in the environmental remediation field are proposed.  相似文献   

16.
《中国化学快报》2022,33(10):4437-4448
For more than a decade, the exfoliation of graphene and other layered materials has led to a tremendous amount of research in two-dimensional (2D) materials, among which 2D transition metal chalcogenides (TMCs) nanomaterials have attracted much attention in a wide range of applications including photoelectric devices, lithium-ion batteries, catalysis, and energy conversion and storage owing to their unique photoelectric physical properties. With such large specific surface area, strong near-infrared (NIR) absorption and abundant chemical element composition, 2D TMCs nanomaterials have become good candidates in biomedical imaging and cancer treatment. This review systematically summarizes recent progress on 2D TMCs nanomaterials, which includes their synthesis methods and applications in cancer treatment. At the end of this review, we also highlight the future prospects and challenges of 2D TMCs nanomaterials. It is expected that this work can provide the readers with a detailed overview of the synthesis of 2D TMCs and inspire more novel functional biomaterials based on 2D TMCs for cancer treatment in the future.  相似文献   

17.
《中国化学快报》2020,31(10):2539-2548
Global climate change, growing population, and environmental pollution underscore the need for a greater focus on providing advanced water treatment technologies. Although electrochemical based-processes are becoming promising solutions, they still face challenges owing to mass transport and upscaling which hinder the exploitation of this technology. Electrode design and reactor configuration are key factors for achieving operational improvements. The electroactive membrane has proven to be a breakthrough technology integrating electrochemistry and membrane separation with an enhanced mass transport by convection. In this review article, we discuss recent progress in environmental applications of electroactive membranes with particular focus on those composed of carbon nanotubes (CNT) due to their intriguing physicochemical properties. Their applications in degradation of refractory contaminants, detoxification and sequestration of toxic heavy metal ions, and membrane fouling alleviations are systematically reviewed. We then discuss the existing limitations and opportunities for future research. The development of advanced electroactive systems depends on interdisciplinary collaborations in the areas of materials, electrochemistry, membrane development, and environmental sciences.  相似文献   

18.
冯丹  隗翠香  夏炎 《色谱》2017,35(3):237-244
金属有机骨架(MOFs)材料是一类以过渡金属为中心、含杂原子的有机物为配体、通过配位作用形成的周期性网络多孔晶体材料。与其他的多孔材料相比,MOFs配体种类繁多,比表面积极大,孔径大小可调控且具有特殊(饱和或不饱和)的金属位点,在气体存储、催化、吸附与分离等领域有广阔的应用前景。近年来,功能化MOFs对污染物的富集和去除成为学者关注的热点。这是由于通过对MOFs进行功能化修饰,能够改变MOFs的孔径大小、表面带电性质等物化性质,从而实现对目标物更高效的吸附。该文综述了近年来功能化MOFs对饮用水污染物吸附的研究进展,包括饮用水污染物的类型及危害、功能化MOFs的制备方法以及去除饮用水污染物的应用,并对今后的发展前景进行了展望。  相似文献   

19.
Direct electrochemical reduction of CO_2 into valuable chemicals and fuel is one of the most promising approaches to address the current energy crisis and lower CO_2 emission. Recently, numerous metal-organic framework(MOF) and their derived materials have extensively been developed as electrocatalysts for CO_2 reduction owing to their unique structure including porosity, large specific surface area, and tunable chemical structures. In this review, the recent progress of MOF-based electrocatalysts for CO_2 reduction was summarized and discussed. Detailed discussions mainly focus on the synthesis and mechanism of pristine MOFs and MOF-derived materials for electrocatalytic CO_2 reduction. These examples are expected to provide clues to rational design and synthesis of stable and high-performance MOFs-based electrocatalysts for CO_2 reduction.  相似文献   

20.
系统总结了金属有机框架(MOFs)基材料在光催化还原CO2中的最新研究进展, 其中包括MOFs直接作为光催化剂和作为复合光催化2个主要部分, 讨论了MOFs基光催化剂在催化还原CO2方面展现出的独特优势, 并对MOFs基光催化剂的结构稳定性与CO2转化效率等问题进行讨论与分析, 对未来发展趋势进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号