首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Capillary electrophoresis on microchip   总被引:10,自引:0,他引:10  
Capillary electrophoresis and related techniques on microchips have made great strides in recent years. This review concentrates on progress in capillary zone electrophoresis, but also covers other capillary techniques such as isoelectric focusing, isotachophoresis, free flow electrophoresis, and micellar electrokinetic chromatography. The material and technologies used to prepare microchips, microchip designs, channel geometries, sample manipulation and derivatization, detection, and applications of capillary electrophoresis to microchips are discussed. The progress in separation of nucleic acids and proteins is particularly emphasized.  相似文献   

2.
芯片毛细管电泳及其在生命科学中的应用   总被引:10,自引:0,他引:10  
王辉  林炳承 《分析化学》2002,30(3):359-364
芯片毛细管电泳 (Chip CE)技术在近几年已取得了很大的进展。本文着重介绍芯片毛细管区带电泳技术 ,对等电聚焦、等速电泳、自由溶液电泳及胶束电动色谱等其它芯片电泳模式也有所提及。讨论了芯片材料和制作技术、芯片的几何形状、样品的操作和衍生、检测及芯片毛细管电泳技术的应用 ,特别是在核酸和蛋白质的分离分析中的进展  相似文献   

3.
《Electroanalysis》2005,17(13):1215-1221
The coupling of a capillary electrophoresis (CE) microchip with electrochemical detection with a chemometric approach was used for the classification of wines. Cabernet Sauvignon wine samples from 3 different geographical regions were used for verifying the discriminating power of the microchip electrophoretic technique using high separation voltage (3000 V) with analysis time of only 60 seconds. Electrophoretic data were transformed into initial 14 variables, concerning peak's area and peak's height. Principal component analysis was applied to optimize the information given by the electrophoretic data sets. Results of classification using LDA and CART were promising and the preliminary model was able to classify samples on the basis of their geographical origin. While the coupling of microchips with chemometrics approaches is illustrated for a former tentative of the classification of wines it could be readily extended to a wide range of other important applications.  相似文献   

4.
Wall coating for capillary electrophoresis on microchips   总被引:2,自引:0,他引:2  
Dolník V 《Electrophoresis》2004,25(21-22):3589-3601
This review article with 116 references describes recent developments in the preparation of wall coatings for capillary electrophoresis (CE) on a microchip. It deals with both dynamic and permanent coatings and concentrates on the most frequently used microchip materials including glass, poly(methyl methacrylate), poly(dimethyl siloxane), polycarbonate, and poly(ethylene terephthalate glycol). Characterization of the channel surface by measuring electroosmotic mobility and water contact angle of the surface is included as well. The utility of the microchips with coated channels is demonstrated by examples of CE separations on these chips.  相似文献   

5.
自制玻璃微流控芯片及其基本性能考察   总被引:3,自引:0,他引:3  
20世纪90年代初,自Manz等首次提出微全分析系统的概念以来,各种不同材料和功能的微流控芯片不断问世,其中应用得最多的是玻璃、石英及聚合物3种材料.玻璃和石英芯片因具有优异的电渗、光学和表面性质,其刻蚀加工技术和表面改性的化学方法均比较成熟,且传统毛细管电泳中各种成熟的分离方法可直接应用到玻璃芯片的制作中,因此在微全分析系统研究中具有十分重要的地位.  相似文献   

6.
This review gives a summary of applications of different nanomateials, such as gold nanoparticles (AuNPs), carbon‐based nanoparticles, magnetic nanoparticles (MNPs), and nano‐sized metal organic frameworks (MOFs), in electrophoretic separations. This review also emphasizes the recent works in which nanoparticles (NPs) are used as pseudostationary phase (PSP) or immobilized on the capillary surface for enhancement of separation in CE, CEC, and microchips electrophoresis.  相似文献   

7.
Baena B  Cifuentes A  Barbas C 《Electrophoresis》2005,26(13):2622-2636
This review article addresses the different capillary electrophoretic methods that are being used for the study of both short-chain organic acids (including anionic catecholamine metabolites) and fatty acids in biological samples. This work intends to provide an updated overview (including works published until November 2004) on the recent methodological developments and applications of such procedures together with their main advantages and drawbacks. Moreover, the usefulness of CE analysis of organic acids to study and/or monitor different diseases such as diabetes, new-borns diseases or metabolism disorders is examined. The use of microchip devices and CE-MS couplings for organic acid analysis is also discussed.  相似文献   

8.
CE microchips: an opened gate to food analysis   总被引:1,自引:0,他引:1  
CE microchips are the first generation of micrototal analysis systems (-TAS) emerging in the miniaturization scene of food analysis. CE microchips for food analysis are fabricated in both glass and polymer materials, such as PDMS and poly(methyl methacrylate) (PMMA), and use simple layouts of simple and double T crosses. Nowadays, the detection route preferred is electrochemical in both, amperometry and conductivity modes, using end-channel and contactless configurations, respectively. Food applications using CE microchips are now emerging since food samples present complex matrices, the selectivity being a very important challenge because the total integration of analytical steps into microchip format is very difficult. As a consequence, the first contributions that have recently appeared in the relevant literature are based primarily on fast separations of analytes of high food significance. These protocols are combined with different strategies to achieve selectivity using a suitable nonextensive sample preparation and/or strategically choosing detection routes. Polyphenolic compounds, amino acids, preservatives, and organic and inorganic ions have been studied using CE microchips. Thus, new and exciting future expectations arise in the domain of food analysis. However, several drawbacks could easily be found and assumed within the miniaturization map.  相似文献   

9.
《Electroanalysis》2005,17(13):1133-1140
Electrochemistry detection offers considerable promise for capillary‐electrophoresis (CE) microchips, with features that include remarkable sensitivity, portability, independence of optical path length or sample turbidity, low cost and power requirements, and high compatibility with modern micromachining technologies. This article highlights key strategies in controlled‐potential electrochemical detectors for CE microchip systems, along with recent advances and directions. Subjects covered include the design of the electrochemical detection system, its requirements and operational principles, common electrode materials, isolation from the separation voltage, derivatization reactions, typical applications, and future prospects. It is expected that electrochemical detection will become a powerful tool for CE microchip systems and will lead to the creation of truly portable (and possibly disposable) devices.  相似文献   

10.
Nagata H  Tabuchi M  Hirano K  Baba Y 《Electrophoresis》2005,26(14):2687-2691
In this paper, we describe a method for size-based electrophoretic separation of sodium dodecyl sulfate (SDS)-protein complexes on a polymethyl methacrylate (PMMA) microchip, using a separation buffer solution containing SDS and linear polyacrylamide as a sieving matrix. We developed optimum conditions under which protein separations can be performed, using polyethylene glycol (PEG)-coated polymer microchips and electrokinetic sample injection. We studied the performance of protein separations on the PEG-coated PMMA microchip. The electrophoretic separation of proteins (21.5-116.0 kDa) was completed with separation lengths of 3 mm, achieved within 8 s on the PEG-coated microchip. This high-speed method may be applied to protein separations over a large range of molecular weight, making the PEG-coated microchip approach applicable to high-speed proteome analysis systems.  相似文献   

11.
Derivatization of inorganic ions in capillary electrophoresis   总被引:1,自引:0,他引:1  
Padarauskas A 《Electrophoresis》2003,24(12-13):2054-2063
This review gives a short overview of the main approaches to the derivatization of inorganic ions in capillary electrophoresis (CE) with emphasis on the most recent works. Various derivatization procedures and detection methods are discussed. A brief account of their advantages and limitations is given. More specific areas such as microchip CE, simultaneous separation of anions and cations, and speciation analysis are also briefly discussed.  相似文献   

12.
Conventional microchip applications involving capillary electrophoresis (CE) typically inject a sample along one channel and use an intersection of two channels to define the sample plug--the portion of sample to be analysed along a second channel. In contrast to this method of zone separation, frontal analysis proceeds by injecting sample continuously into a single channel or column. Frontal analysis is more common in macroscopic procedures but there are benefits in sensitivity and device density to its application to electrophoresis on microchips. This work compares conventional microchip zone analysis with frontal analysis in the separation of PCR products. Although we detect on the order of 5000 fluorophores with a compact instrument using the zone separation CE method, we found a several-fold increase in the effective signal-to-noise ratio by using a frontal analysis method. By removing the need for additional channels and reservoirs the frontal method would allow device densities to be significantly increased, potentially improving the cost-effectiveness of microchip analyses in applications such as medical diagnostics.  相似文献   

13.
This review highlights the methodological and instrumental developments in microchip micellar EKC (MCMEKC) from 1995. The combination of higher separation efficiencies in micellar EKC (MEKC) with high-speed separation in microchip electrophoresis (MCE) should provide high-throughput and high-performance analytical systems. The chip-based separation technique has received considerable attention due to its integration ability without any connector. This advantage allows the development of a multidimensional separation system. Several types of 2-D separation microchips are described in the review. Since complicated channel configurations can easily be fabricated on planar substrates, various sample manipulations can be carried out prior to MCMEKC separations. For example, mixing for on-chip reactions, on-line sample preconcentration, on-chip assay, etc., have been integrated on MEKC microchips. The application of on-line sample preconcentration to MCMEKC can provide not only sensitivity enhancement but also the elucidation of the preconcentration mechanism due to the visualization ability of MCE. The characteristics of these sample manipulations on MEKC microchips are presented in this review. The scope of applications in MCMEKC covers mainly biogenic compounds such as amino acids, peptides, proteins, biogenic amines, DNA, and oestrogens. This review provides a comprehensive table listing the applications in MCMEKC in relation to detection methods.  相似文献   

14.
Advantages of devices on a microchip platform are discussed in comparison with traditional systems. Stages and processes of creation of microfluidic chips are considered. The basic technologies of formation micro- and nanostructures on a substrate from various materials and techniques for microchip sealing are introduced. Special attention is given to microfluidic chips for separation and analysis of nucleic acids and proteins, as well as to microchips for PCR. Examples of integrated systems on the basis of microfluidic technique are considered. Data on the commercialization of devices based on microfluidic chips are presented.  相似文献   

15.
This review focuses on the integration of chemical and biochemical analysis systems into glass microchips for general use. By combining multiphase laminar flow driven by pressure and micro unit operations, such as mixing, reaction, extraction and separation, continuous-flow chemical processing systems can be realized in the microchip format, while the application of electrophoresis-based chip technology is limited. The performances of several analysis systems were greatly improved by microchip integration because of some characteristics of microspace, i.e., a large specific interface area, a short molecular diffusion time, a small heat capacity and so on. By applying these concepts, several different analysis systems, i.e., wet analysis of cobalt ion, multi-ion sensor, immunoassay, and cellular analysis, were successfully integrated on a microchip. These microchip technologies are promising for meeting the future demands of high-throughput chemical processing.  相似文献   

16.
Lin CH  Kaneta T 《Electrophoresis》2004,25(23-24):4058-4073
Methods with a high sensitivity and high separation efficiency are goals in analytical separation techniques. On-line sample concentration techniques in capillary electrophoresis (CE) separations have rapidly grown in popularity over the past few years because they achieve this goal. This review describes the methodology and theory associated with a number of different techniques, including electrokinetic and chromatographic methods. For small molecules, several on-line concentration methods based on velocity gradient techniques are described, in which the electrophoretic velocities of the analyte molecules are manipulated by field amplification, sweeping, and isotachophoretic migration, resulting in the on-line concentration of the analyte zones. In addition, the on-line concentration methods for macromolecules are described, since the techniques used for macromolecules (DNAs and proteins), are different from those for small molecules, with respect to either mechanism or methodology. Recent studies relating to this topic are also discussed, including electrophoretic and chromatographic techniques on capillary or microchip.  相似文献   

17.
Sun Y  Kwok YC  Nguyen NT 《Electrophoresis》2007,28(24):4765-4768
Joule heating generated in CE microchips is known to affect temperature gradient, electrophoretic mobility, diffusion of analytes, and ultimately the efficiency and reproducibility of the separation. One way of reducing the effect of Joule heating is to decrease the cross-section area of microchannels. Currently, due to the limit of fabrication technique and detection apparatus, the typical dimensions of CE microchannels are in the range of 50-200 microm. In this paper, we propose a novel approach of performing microchip CE in a bundle of extremely narrow channels by using photonic crystal fiber (PCF) as separation column. The PCF was simply encapsulated in a poly(methyl methacrylate) (PMMA) microchannel right after a T-shaped injector. CE was simultaneously but independently carried out in 54 narrow capillaries, each capillary with diameter of 3.7 microm. The capillary bundle could sustain high electric field strength up to 1000 V/cm due to efficient heat dissipation, thus faster and enhanced separation was attained.  相似文献   

18.
Dolník V 《Electrophoresis》2006,27(1):126-141
This review article with 304 references describes recent developments in CE of proteins, and covers the two years since the previous review (Hutterer, K., Dolník, V., Electrophoresis 2003, 24, 3998-4012) through Spring 2005. It covers topics related to CE of proteins, including modeling of the electrophoretic migration of proteins, sample pretreatment, wall coatings, improving separation, various forms of detection, special electrophoretic techniques such as affinity CE, CIEF, and applications of CE to the analysis of proteins in real-world samples including human body fluids, food and agricultural samples, protein pharmaceuticals, and recombinant protein preparations.  相似文献   

19.
New dynamic coating agents were investigated for the manipulation of electroosmotic flow (EOF) in poly(methylmethacrylate) (PMMA) microchips. Blocking proteins designed for enzyme-linked immunosorbent assay (ELISA) applications (e.g. Block Ace and UltraBlock), and egg-white lysozyme were proposed in this study. The EOF could be enhanced, suppressed or its direction could be reversed, depending on the buffer pH and the charge on the proteins. The coating procedure is simple, requiring only filling of the microchannels with a coating solution, followed by a rinse with a running buffer solution prior to analysis. One major advantage of this method is that it is not necessary to add the coating agent to the running buffer solution. Block Ace and UltraBlock coatings were stable for at least five runs in a given microchannel without the need to condition the coating between runs other than replenishing the buffer solution after each run, i.e. the RSD values of EOF (n=5) were less than 4.3%, and there was no significant change in the EOF after 5 runs. The reproducibility of the coating procedures was found from the channel-to-channel RSD values of the EOF, and were less than 5.0% when using HEPES-Na buffer (pH 7.4) as the running buffer. Several examples of electrophoretic separations of amino acids and biogenic amines derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) are demonstrated in this paper. The dynamic coating method has the potential for a broad range of applications in microchip capillary electrophoresis (microchip CE) separations.  相似文献   

20.
Little MJ  Paquette DM  Roos PK 《Electrophoresis》2006,27(12):2477-2485
The biotechnology industry has undergone rapid growth in recent years largely due to the development and success of protein-based therapeutics for a wide range of disorders. Similar to traditional pharmaceuticals, characterization of a therapeutic protein for its physicochemical properties, process monitoring and lot release is crucial. Electrophoresis in the slab-gel format has and continues to be a mainstay of the protein laboratory; and more recently, CE has begun to make significant inroads for protein analysis in industrial settings. This review focuses on the electrophoresis of proteins with an emphasis on protein-based therapeutics in the capillary, slab-gel and to a lesser extent, the microchip format. Reported applications of electrophoresis at several stages of the biopharmaceutical industry covering the period of 2000-2005 will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号