首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cathode plasmas in pulsed high current vacuum diodes have been studied using optical interferometry and spectroscopy. Both aluminum and graphite cathodes were used and the diode current density was varied over a factor of ten. The cathode plasma inventory was seen to increase during the length of the pulse and the plasma density was seen to increase with increasing current density. Spectral line emission from H, CI, CII, and CIII was observed when either cathode was used. It is concluded that cathode plasma expansion is dominated by protons from cathode surface contaminants.  相似文献   

2.
In this paper we investigated the surface morphology and emission property of polymer velvet in a cathode test system powered by a ∼400 ns, ∼400 kV pulsed generator. After a series of pulse shots, the velvet surface exhibited an obvious decrease in the amount of emitters, namely, the smoothing of microprotrusions, indicating a lower field enhancement factor or a higher turn-on electric field than that for no shots. As the velvet cathode lifetime proceeded, the beam degradation was observed in terms of the voltage pulse length, maximum emission current, and rise time of diode current. Further, the average current density significantly decreased during a 100 pulse shot test, from 280 to 160 A/cm2. The surface discharge caused many plasma spots on the velvet surface. The cathode plasma expands towards the anode, directly leading to the diode gap closure. The degradation in the velvet performance after high-current emission may be related to this behavior of cathode plasma. Finally, the electron emission mechanisms, how to affect the surface morphology of velvet, are presented.  相似文献   

3.
介绍了由于磁铁的安装误差和螺线管的存在而造成的束流径向和轴向的耦合,以及耦合对束流稳定的影响。结合CSRm结构的典型参数分析得出:二极磁铁和四极磁铁在纵向角安装偏差为-0.5~0.5 mrad;有螺线管存在的情况下,工作点落在和共振线时,将导致束流不稳定而大量损失,落在差共振线时,束流稳定。通过模拟计算发现:螺线管产生的耦合远大于磁铁的纵向角安装偏差产生的耦合。  相似文献   

4.
The energy and current balances in the diode unit of a high-current pulsed electron accelerator (350–500 keV, 60 ns, 250 J per pulse) are compared for an explosive emission cathode (made of graphite, copper, or carbon felt) and a multipoint (graphite or copper) cathode. The planar diode with the continuous cathode is shown to be more efficient in terms of conversion of the applied energy to electron energy (more than 90%) despite a delay in the plasma surface formation. With the impedance of the planar diode matched to the output resistance of the nanosecond generator, the efficiency of the diode does not depend on the time of plasma formation on the cathode. In the case of the graphite cathode, the plasma formation delay reduces the fraction of slow electrons in the forming electron beam and reduces electron losses in anode foil when the beam is extracted from the vacuum space of the diode chamber into the reactor.  相似文献   

5.
The generation of a 250-μs-wide electron beam in a plasma-emitter diode is studied experimentally. A plasma was produced by a pulsed arc discharge in hydrogen. The electron beam is extracted from a circular emission hole 3.8 mm in diameter under open plasma boundary conditions. The beam accelerated in the diode gap enters into a drift space in the absence of an external magnetic field through a hole 4.1 mm in diameter made in the anode. The influence of electron current deposition at the edge of the anode hole on the beam’s maximum attainable current, above which the diode gap breaks down, is studied for different accelerating voltages and diode gaps. The role of processes occurring on the surface of the electrodes is shown. For an accelerating voltage of 32 kV, a mean emission current density of 130 A/cm2 is achieved. The respective mean strength of the electric field in the acceleration gap is 140 kV/cm. Using the POISSON-2 software package, the numerical simulation of the diode performance is carried out and the shape of steady plasma emission boundaries in the cathode and anode holes is calculated. The influence of the density of the ion current from the anode plasma surface on the maximum attainable current of the electron beam is demonstrated.  相似文献   

6.
以闪光二号加速器为研究平台,实验研究了前沿80 ns和34 ns脉冲电压下的二极管工作稳定性,通过对比实验结果和数值模拟结果,分析了脉冲前沿对二极管启动时间、阴极发射均匀性和阻抗重复性的影响,探讨了脉冲前沿对平面阴极二极管工作状态的影响机制。实验结果表明:脉冲前沿、二极管启动时间增加时,二极管的阻抗重复性降低;平面阴极易于在中心位置形成强区域发射,等离子体覆盖整个阴极发射面的时间随脉冲前沿增大而增加;屏蔽效应对阴极发射的影响随前沿增加而变大,进而导致阴极表面不均匀强点发射,等离子体运动速度增加,阴极有效发射面积减小,在等离子体运动速度和阴极有效发射面积共同作用下,二极管工作稳定性下降。  相似文献   

7.
杨汉武  荀涛  高景明  张自成 《强激光与粒子束》2022,34(9):095002-1-095002-6
介绍了一种微秒长脉冲有磁场的真空二极管界面的设计和实验结果。采取了三种措施来抑制沿面闪络:一是阴极电子束挡板,用来拦截来自阴极和电子束漂移管的回流电子束;二是接地屏蔽板,使电场等势线和界面成约45°角,使阴极三结合点处发射的电子远离绝缘板;三是降低阴极三结合点处的场强,并使用一悬浮电位的金属环阻止电子倍增过程。计算了二极管内电场、磁场分布和电子束的运动轨迹并据此优化了真空界面的结构,实验验证了该二极管真空界面可以在400 kV、800 ns条件下正常工作,可以支持长脉冲高功率微波器件的研究。  相似文献   

8.
A numerical study of a low-voltage vircator with controlled emissions from a thermocathode is performed for when an external signal effects on the electron beam and modulates the emission. The strong influence of the modulation parameters on characteristics of oscillations of the beam with virtual cathode is noted. It is shown that when the modulation frequency is tuned to the one of harmonics of a virtual cathode’s free oscillations, there is a considerable increase in the power of high-frequency harmonics of the virtual cathode’s free oscillations in the output spectrum.  相似文献   

9.
The I–V characteristics of a planar diode with a multipoint explosive emission cathode are studied under the conditions when the impedance of the diode is matched to the output resistance of the nanosecond generator. The experiments are carried out on the TÉU-500 (350–500 keV, 60 ns, 250 J per pulse) high-current electron accelerator. The perveances of the diodes with a spike (140 spikes) cathode, multipoint copper cathode, and cathode made of carbon felt are measured in the course of electron beam generation. Comparison is performed between the I–V characteristics of the diodes with multipoint and continuous cathodes made of the same material. It is found that the electron current of the diode is described well by Child’s law with regard to the shrinkage of the anode-cathode gap and an increase in the emissive surface due to the expanding plasma (formfactor). When the cathode is made of carbon felt or is multipoint, the space-charge-limited electron current mode sets in even 5–10 ns after the voltage is applied.  相似文献   

10.
向飞  吴平  曾凡光  王淦平  李春霞  鞠炳全 《物理学报》2015,64(16):164103-164103
在Cu基底上, 采用催化热解生长法制备了石墨化程度较高的碳纳米管阴极. 当电子束能量达到1 MeV、梯度约为60 kV/ns时, 发射束流强度达到15 kA, 相应密度约为1 kA/cm2, 束压、束流响应快, 波形间几无延时. 以50 Hz重复频率、约15 GW束功率强流发射时, 波形稳定, 随着频率增高, 稳定性降低. 发射炮次达1000后, 表面形貌保持完整、界面无脱附; 束压与束流基本满足空间电荷限制定律, 发射机理属闪络型等离子体发射, 等离子体速度约为3.9 cm/μs.  相似文献   

11.
 本文用MAGIC程序对设计的多种12MV直线感应加速器的二极管结构进行模拟计算,得出了二极管阴极表面电场强度分布,并根据实验研究结果,得到了结构最佳设计的二极管模型;随后利用扫描电镜方法对不同天鹅绒的结构进行了分析与发射性能实验研究。最后得到优化后的二极管产生的电子束束流参数为发射束流Ie=8.50kA,传输束流I8=3.0kA ,打靶束流I0=2.30kA。  相似文献   

12.
The results of experimental study on generation of ultrashort avalanche electron beams (UAEB) in gas-filled diodes are considered. The spatial distribution of the flux of runaway electrons and X-rays generated in the gas diode fed by nanosecond high-voltage pulses was studied. It was shown that the UAEB in the gas-filled diode (at an air pressure of 1 atm) with sharply nonuniform electric field is generated from the interelectrode region into a solid angle exceeding 2π sr. Narrowing of the cathode-anode gap results in a decrease in the current amplitude of the beam generated to side walls of the gas diode and an increase in the beam current pulse duration in both axial and radial directions. Current pulses of the beam initiated from the side surface of the tubular cathode were detected.  相似文献   

13.
平面二极管爆炸发射阴极特性实验研究   总被引:4,自引:4,他引:0       下载免费PDF全文
 在电压0.6~1.0 MV,脉冲重复频率为100 Hz条件下,实验研究了爆炸发射阴极的有效发射面积、平均发射电流密度、二极管阻抗、电子束能量损耗机制等特性。结果表明:阴极有效发射面积随时间呈方波变化,在脉冲开始后5 ns内有效发射面积基本达到稳定。在碳纤维、天鹅绒、石墨、不锈钢4种阴极材料中,碳纤维阴极有效发射面积最大且变化相对稳定,并且碳纤维阴极具有最大的平均发射电流密度。二极管阻抗随着阴阳极间隙的增加并非呈平方关系增加,而是呈线性增长,阻抗失配是降低电子束能量传输效率的主要机制。  相似文献   

14.
Investigations of the generation and transport of a high-current, low-energy electron beam are performed in a system with a gas-filled diode based on a plasma cathode. At accelerating voltages of up to 20 kV and pressures of (1–5)×10−1 Pa, a beam with an emission current of 600 A, emission current density of 12 A/cm2 and pulse duration of 30 μs if obtained in a diode with a grid-stabilized emission opening having a diameter equal to 8 cm. The beam is transported in the absence of an external magnetic field over a distance of 20 cm. The beam is compressed by its self-magnetic field, and the current density at the collector reaches 100 A/cm2 when the beam diameter is 3 cm. Zh. Tekh. Fiz. 68, 44–48 (January 1998)  相似文献   

15.
Low impedance relativistic electron accelerators currently produce nominal 50 ns pulses that are capable of power levels near 1 Terawatt at impedances near 1 Ohm. The time-dependent diode impedance characteristic plays a major role In efficiently coupling the pulse line power to an electron beam. In an effort to establish the desired accelerator impedance match early in the pulse, experimentalists have investigated cold cathode vacuum breakdown and subsequent space charge limited emission during the ~ 100 kV machine prepulse. This machine prepulse is due to capacitive coupling across the accelerator switches, and consequently cannot be independently studied and optimized. In this paper, a technique for externally introducing a typically 100 kV, low power conditioning pulse prior to the main pulse of a low impedance relativistic electron diode is described, along with techniques for reducing the machine prepulse to less than 5 kV. For various cathode geometries, the breakdown field, closure velocity, and time-dependent impedance established by this external prepulse is measured and compared with an empirical model of space charge limited emission from a hydro-dynamically expanding plasma. 3 Experimental evidence is presented that the high current accelerator impedance is effectively controlled by the relative time delay between the start of the prepulse and the main pulse.  相似文献   

16.
The results of experimental investigation and numerical modeling of the generation of low-energy (tens of keV) high-current (up to tens of kA) electron beams in a low-impedance system consisting of a plasma-filled diode with a long plasma anode, an auxiliary hot cathode, and an explosive emission cathode. The low-current low-voltage beam from the auxiliary cathode in an external longitudinal magnetic field is used to produce a long plasma anode, which is simultaneously the channel of beam transportation by residual gas ionization. The high-current electron beam is formed from the explosive emission cathode placed in the preliminarily formed plasma. Numerical modeling is performed using the KARAT PIC code.  相似文献   

17.
 为获得kA级热发射电子束,研制了直径为100 mm钪酸盐热阴极组件,并建立了适应大面积热阴极实验环境的2 MV 注入器试验平台。实验在二极管真空3.7×10-5 Pa、二极管电压1.95 MV、脉宽120 ns(FWHM)、阴极温度1 120 ℃时,获得最大收集电流1 038 A,发射电流密度约13 A/cm2。实验结果表明,工作状态下阴极发射能力与激活温度、系统真空度关系密切。  相似文献   

18.
The transition of a low-current discharge with a self-heated hollow cathode to a high-current discharge is studied, and stability conditions for the latter in the pulsed–periodic mode with a current of 0.1–1.0 kA, pulse width of 0.1–1.0 ms, and a pulse repetition rate of 0.1–1.0 kHz are determined. The thermal conditions of the hollow cathode are analyzed, and the conclusion is drawn that the emission current high density is due to pulsed self-heating of the cathode’s surface layer. Conditions for stable emission from a plasma cathode with a grid acting as a plasma boundary using such a discharge are found at low accelerating voltage (100–200 eV) and a gas pressure of 0.1–0.4 Pa. The density of the ion current from a plasma generated by a pulsed beam with a current of 100 A is found to reach 0.1 A/cm2. Probe diagnostics data for the emitting and beam plasmas in the electron source are presented, and a mechanism behind the instability of electron emission from the plasma is suggested on their basis.  相似文献   

19.
重复脉冲强流电子束源长时间稳定运行实验研究   总被引:6,自引:6,他引:0       下载免费PDF全文
 简要阐述了脉冲变压器型重复脉冲强流电子束加速器CHP01的组成、主要特点及工作原理,利用设计的重复脉冲强流电子束源进行了长时间运行实验研究,实验结果达到:在100 Hz重复频率下连续运行5 s,脉冲变压器能稳定输出电压1.15 MV,强流束二极管输出电压超过800 kV、束流7 kA、脉冲宽度45 ns,阴极电子发射密度超过10 kA/cm2,且运行稳定可靠。利用该电子束源进行了X波段类周期慢波结构微波器件实验研究,在50 Hz重复频率下连续运行5 s,输出微波功率超过1 GW,脉冲宽度大于25 ns。  相似文献   

20.
Operation of explosive-emission cold cathodes made from various materials was studied at a large number of pulses at current densities of ~1.04 A/cm2. The cathode voltage and the beam current were ~500 kV and 5 kA, respectively, with a pulsewidth of ~20 ns. At a small number of pulses (⩽103), cathodes of like geometry (even made from different materials) demonstrated similar emission properties. For most of the materials tested, with a large number of pulses (⩾103), the current risetime increased to the fullwidth of the voltage pulse and the maximum current of the vacuum diode decreased. When using a graphite cathode, the maximum current remained invariant until 108 pulses. Mass losses were measured for a series of cathode materials. The results obtained offered the possibility to realize long-lived operation of an X-band relativistic backward-wave oscillator with an almost invariant output power of 350-400 MW during 108 pulses at a pulse repetition rate of 100-150 p.p.s  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号