首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two picolinate-containing nickel(II) complexes [Ni(bbma)(pic)(H2O)]ClO4 · CH3OH (1) and [Ni(ntb)(pic)]Cl · CH3OH · 3H2O (2) were synthesized and characterized by infrared, elemental analysis, UV-Vis, and X-ray diffraction analyses, where bbma is bis(benzimidazol-2-yl-methyl)amine, ntb is tris(2-benzimidazolylmethyl)amine, pic is the anion of picolinic acid. X-ray analysis shows that both complexes are mononuclear with picolinate coordinated to Ni(II) in a μ2-N,O chelating mode. Both complexes adopt distorted octahedral geometry. Intermolecular N–H ··· O and O–H ··· O hydrogen bonds and π–π interactions in 1 and 2 are important in stabilization of the crystal structures.  相似文献   

2.
The molecular and electronic structures of the electron transfer series of four-coordinate square-planar nickel complexes with the ligand o-phenylenebis(N'-methyloxamidate), [NiL]z (z = 2-, 1-, 0), have been evaluated by DFT and TDDFT calculations, and most of their experimentally available structural and spectroscopic properties (X. Ottenwaelder et al., Dalton Trans., 2005, DOI: 10.1039/b502478a) have been reasonably reproduced at the B3LYP level of theory. The anionic species [NiL]2- and [NiL]- are genuine low-spin nickel II and nickel III complexes with diamagnetic singlet (S = 0) and paramagnetic doublet (S = 1/2) states, respectively. The nickel III complex presents shorter Ni-N(amidate) bond distances (1.85-1.90 A) than the parent nickel II complex (1.88-1.93 A) and characteristic LMCT bands in the NIR region (lambda max = 794 and 829 nm) while the analogous MLCT bands for the nickel(II) complex are in the UV region (lambda max = 346 and 349 nm). The neutral species [NiL] is a nickel III o-benzosemiquinonediimine pi-cation radical complex with a diamagnetic singlet (S = 0) and a paramagnetic triplet (S = 1) states fairly close in energy but fundamentally different in orbital configuration. The singlet metal-radical ground state results from the antiferromagnetic coupling between the 3d(yz) orbital of the Ni III ion (S(M) = 1/2) and the pi(b) orbital of the benzosemiquinone-type radical ligand (S(L) = 1/2), which have a large overlap and thus strong covalent bonding. The triplet metal-radical excited state involves the ferromagnetic coupling between the Ni III 3d(zx) orbital and the benzosemiquinone-type pi(b) orbital, which are orthogonal to each other. The singlet and triplet states of the nickel III pi-cation radical complex possess characteristic quinoid-type short-long-short alternating sequence of C-C bonds in the benzene ring, as well as intense MLCT transitions in the VIS (lambda max = 664 nm) and NIR (lambda max = 884 nm) regions, respectively.  相似文献   

3.
Two sets of nickel(II) complexes of a series of tetradentate NSNO ligands were synthesized and isolated in their pure form. All these complexes, formulated as [Ni(L)Cl]2 and [Ni(L)(N3)]2 [HL = pyridylthioazophenols], were characterized using physicochemical and spectroscopic tools. The solid-state structures of two complexes (1a and 2a) were established by X-ray crystallography. The geometry about the nickel ion of the complexes is octahedral and the complexes are dimeric in nature. In 1, two Ni(II) ions are bridged by two Cl anions while in 2 they are bridged by two azide ions in a μ-1,1-bridging fashion.  相似文献   

4.
The Ru(II) complexes cis-[Ru(L)Cl2] (C1-C3) of novel tetradentate NSNN ligands (L) {where L is C5H4N-CH2-S-C6H4NC(COCH3)-NN-C6H4X, and X is H (L1), CH3 (L2) and Br (L3)}, were synthesized and characterized by spectroscopy (IR, UV/vis and NMR), cyclic voltammetry and crystallography. The tetradentate ligands were isolated as the amidrazones H2L {where H2L is C5H4N-CH2-S-C6H4NH-C(COCH3)N-NH-C6H4X and X is H (H2L1), CH3 (H2L2) and Br (H2L3)} as shown by crystallography of H2L1, but oxidize to azoimines during the formation of the Ru(II) complexes. A crystallographic analysis of C1 showed that the Ru(II) centre is in a distorted octahedral coordination sphere in which the tetradentate ligand occupies three equatorial sites and one axial site (two azoimine nitrogens and a thio sulfur in the equatorial plane and an axial pyridine nitrogen) and two chlorides occupying axial and equatorial coordination sites. The Ru(II) oxidation state is greatly stabilized by the novel tetradentate ligand, showing Ru(III/II) couples ranging from 1.43 to 1.51 V. The absorption spectrum of C1 in acetonitrile was modelled by time-dependent density functional theory.  相似文献   

5.
6.
Li J  Song H  Cui C  Cheng JP 《Inorganic chemistry》2008,47(9):3468-3470
The synthesis and characterization of the two homoleptic mononuclear nickel complexes (2,6-Dipp2C6H3NH)2Ni ( 1) and [2-C(H)NDippC6H4NH] 2Ni (2) (Dipp = 2,6-Pr(i)2C6H3) are described. 1 is formally two-coordinate and adopts a strictly linear geometry, while 2 features a slightly distorted square-planar geometry. Electrochemistry of 1 and 2 shows that they can be reduced to the corresponding nickel(I) species and oxidized to the corresponding nickel(III) species reversibly or quasi-reversibly. A solid-state magnetic measurement (mu(eff )= 2.79 mu(B)) for paramagnetic 1 indicates the presence of two unpaired electrons on the nickel center.  相似文献   

7.
8.
9.
10.
Nickel(II) complexes with three new vic‐dioxime reagents, N‐(ethyl‐4‐amino‐1‐piperidine carboxylate)phenylglyoxime (L1H2), N‐(ethyl‐4‐amino‐1‐piperidine carboxylate)glyoxime (L2H2) and N,N′‐bis(ethyl‐4‐amino‐1‐piperidine carboxylate)glyoxime (L3H2), have been prepared. Mononuclear nickel(II) complexes with a metal/ligand ratio of 1:2 were prepared using Ni(II) salt. All these nickel(II) complexes are nonelectrolytes as shown by their molar conductivities (ΛM) in DMF solution at 10−3 M concentration. The ligands are soluble in common solvents such as DMSO, DMF, CHCl3, and C2H5OH. The ligands and their Ni(II) complexes were characterized by elemental analyses, FT‐IR, UV‐visible, 1H NMR, 13C NMR, magnetic susceptibility measurements, cyclic voltammetry, and molar conductivities (ΛM). The cyclic voltammetric measurements show that [Ni(L1H)2] and [Ni(L2H)2] complexes exhibit almost similar electrochemical behavior, with two reduction and two oxidation processes based on either metals or oxime moities, while [Ni(L3H)2⋅2H2O] complex displays irreversible, with one reduction and one oxidation processes based on oxime moity. This main difference could be attributed to the highly polarized [Ni(L3H)2⋅2H2O] complex that has four carboxylate groups attached to piperidine on the oxime moieties. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:657–663, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20357  相似文献   

11.
Several new Cu(II) complexes of Schiff bases obtained by condensation of 2-[N-(α-picolyl)-amino]-benzophenone with different chiral amino acids were synthesized and characterized by physico-chemical and spectroscopic methods. The crystal structure of one of the complexes was determined using single crystal X-ray diffraction. The ligands were coordinated to the metal atom in a tetradentate manner with ONNN donor sets using the carboxyl oxygen, azomethine nitrogen, CON, and pyridine nitrogen. The cytotoxicities of the complexes were evaluated against human cancer cells. The substituents on the aromatic rings strongly influenced the cytotoxicities of the complexes. The complex with bromine substituents on the pyridine rings showed the highest cytotoxicity. The antitumor activities against tumor cell lines were assayed in vitro, and the complexes were found to be highly effective, with six of the nine complexes having inhibition ratios better than that of 5-Fluorouracil. This behavior is indicative of a high ability to circumvent the cellular drug resistance mechanisms.  相似文献   

12.
《Polyhedron》1986,5(3):735-738
A facile synthetic route for unsymmetrical tetradentate Schiff-base ligands has been found by using 5-carboxysalicylaldehyde as a starting material, and their copper(II) and nickel(II) complexes have been prepared and characterized by magnetic susceptibilities, electronic absorption spectra, and polarographic reduction potentials.  相似文献   

13.
The four title CuII compounds are chloro­[(2‐furyl­methyl)­bis(2‐pyridyl­methyl)­amine‐N,N′,N′′]copper(II) perchlorate, [CuCl(C17H17N3O)]ClO4, (I), chloro{2‐[bis(2‐pyridyl­methyl)­amino]­ethano­lato‐N,N′,N′′,O}­copper(II) hemi­[tetra­chloro­copper(II)], [CuCl(C14H17N3O)][CuCl4]1/2, (II), chloro­[(2‐morpholino­ethyl)­bis(2‐pyridyl­methyl)­amine‐N,N′,N′′,N′′′]copper(II) perchlorate, [CuCl(C18H24N4O)]ClO4, (III), and chloro­[(2‐piperidinyl­ethyl)­bis(2‐pyridyl­methyl)­amine‐N,N′,N′′,N′′′]­copper(II) hexa­fluoro­phosphate, [CuCl(C19H26N4)]­PF6, (IV). They have tripodal potentially tetradentate ligands. In (I), the O atom of the furan moiety weakly coordinates to the Cu atom at a distance of 2.750 (3) Å.  相似文献   

14.
Four β-ketoimine ligands (two series) were prepared through traditional condensation reactions of β-diketones with 2,6-substituted anilines. Reaction took place only at the cyclohexanone carbonyl rather than at the acetyl or benzoyl carbonyl, even if more than two equivalents of the amines were added. Consequently, four new moisture- and air-stable bis(β-ketoamino)nickel(II) complexes, Ni[2–CH3C(O)C6H8(=NAr)]2 (Ar?=?2, 6-iPr2C6H3, (1); Ar?=?2, 6-Me2C6H3, (2) and Ni[2–PhC(O)C6H8(=NAr)]2 (Ar?=?2, 6-iPr2C6H3, (3); Ar?=?2, 6-Me2C6H3, (4) were obtained and characterized. The solid-state structures of complex 1, 2 and 3 have been determined by single-crystal X-ray diffraction. Additionally, these complexes can be applied as highly active catalyst precursors for vinyl polymerization of norbornene (NBE) after activation with methylaluminoxane (MAO).  相似文献   

15.
New ionic complexes [ML2(MeCN)2]?2Otf (M = Co or Ni; L = 6-ferrocenyl-2,2′-bipyridyl) were synthesized and characterized by single-crystal X-ray diffraction. Cyclic voltammograms of the compounds [ML2(MeCN)2]?2Otf in CH2Cl2 show good cycle stability over 100 cycles in the quasi-reversible oxidation potential range (from −0.25 to 0.5 V).  相似文献   

16.
Nickel(II) complexes of a series of N,N'-polymethylenebis(3,5-Bu(2)(t)-salicylaldimine) ligands containing 2,4-di-Bu(2)(t)-phenol arms, NiL(x), were synthesized and their spectroscopic and redox properties were examined. The UV-vis, (1)H NMR spectroscopic and magnetic results indicate that complexes NiL(1)-NiL(4) unlike NiL(5) and NiL(6) have a square-planar structure in the solid state and in solution. Cyclic voltammograms of NiL(x) (x=1-4) complexes displayed two-step oxidation processes. The first oxidation peak potentials of all Ni(II) complexes corresponds to the reversible one-electron oxidation process of the metal center, yielding Ni(III) species. The second oxidation peak of the complexes was assigned as the ligand based oxidation generating a coordinated phenoxyl radical species.  相似文献   

17.
Highly crosslinked polymeric networks formed by cyclodextrins (CD) have recently been shown to be highly versatile nanosponge systems, being for instance very efficient both for drug delivery and for pollutants removal. Here we report some molecular simulation results for dry and hydrated CD nanosponge models aimed to study their swelling behavior. We also report simulation results about the water mobility in these systems in terms of the calculated diffusion coefficient of “free” and of “bound” water molecules confined within the nanosponge cavities. Furthermore, we also suggest the presence of surface-constrained water molecules temporarily bound to the network surface but eventually set free in the bulk.  相似文献   

18.
Copper(II) complexes generalized as Cu2N6 and CuN6 were prepared by using hexadentate ligands, and their spectral and electrochemical behavior was analysed. X-ray analysis of binuclear [Cu2L2Cl2]2+ reveals that one copper is trigonal bipyramidal and the other is square pyramidal. Electronic spectra used to determine their stereochemistry in solution indicate that dinuclear Cu2N6 has two visible bands that correspond to a typical five-coordinate copper(II) environment, whereas only one broad band was obtained for mononuclear CuN6. When NaN3 was added to the dinuclear compounds, their UV–visible spectra underwent significant changes and an isosbestic point at 650?nm was observed; however, no such feature was encountered for the mononuclear compounds.  相似文献   

19.
The synthesis, characterization and thermal behavior of new monomeric allylpalladium (II) complexes with dichalcogenoamidodiphosphinate anions are reported. The complexes [R = H, R′ = Pri, E = S (1a); R = H, R′ = Pri, E = Se (1b); R = H, R′ = Ph, E = S (1c); R = H, R′ = Ph, E = Se (1d); R = Me, R′ = Pri, E = S (2a); R = Me, R′ = Pri, E = Se (2b); R = Me, R′ = Ph, E = S (2c); R = Me, R′ = Ph, E = Se (2d)] have been prepared by room temperature reaction of [Pd(η3-CH2C(R)CH2)(acac)] (acac = acetylacetonate) with dichalcogenoimidodiphosphinic acids in acetonitrile solution. The complexes have been characterized by multinuclear NMR (1H, 13C{1H}, 31P{1H}, 77Se{1H}), FT-IR and elemental analyses. The crystal structures of complexes 1a, 1d and 2d have been reported and they consist of a six-membered PdE2P2N ring (E = S for 1a and Se for 1d and 2d) and an allyl group, C3H4R(R = H for 1a and 1d and Me for 2d). Thermogravimetric studies have been carried out for few representative complexes. The complexes thermally decompose in argon atmosphere to leave a residue of palladium chalcogenides, which have been characterized by PXRD, SEM and EDS.  相似文献   

20.
When trans-[NiRf2L2] (Rf = 3,5-C6Cl2F3; L = group 15 soft monodentate weak ligand such as SbPh3 or AsPh3) is dissolved in wet (CD3)2CO, isomerization (to give cis-[NiRf2L2]) and subsequent substitutions of L by (CD3)2CO or by water occur, and several complexes containing acetone and aqua ligands are formed. The isomerization takes place in a few seconds at room temperature. The substitution reactions on the cis isomer formed are faster. The kinetics of the equilibria between all of the participating species have been studied by 19F exchange spectroscopy experiments at 217 K, and the exchange rates and rate constants have been calculated. These data reflect the weakness of acetone compared to water and AsPh3. The data obtained are the first available for square-planar nickel(II) aquacomplexes. The bulkier AsCyPh2 ligand slows down the exchange processes while the displacement of AsMePh2 is clearly disfavored. Activation entropy studies support an associative ligand substitution. All of these data fit well with the previously reported relative activity of these complexes as catalysts in norbornene polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号