首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Advances in the area of sample preparation are significant and have been growing significantly in recent years. This initial step of the analysis is essential and must be carried out properly, consisting of a complicated procedure with multiple stages. Consequently, it corresponds to a potential source of errors and will determine, at the end of the process, either a satisfactory result or a fail. One of the advances in this field includes the miniaturization of extraction techniques based on the conventional sample preparation procedures such as liquid‐liquid extraction and solid‐phase extraction. These modern techniques have gained prominence in the face of traditional methods since they minimize the consumption of organic solvents and the sample volume. As another feature, it is possible to reuse the sorbents, and its coupling to chromatographic systems might be automated. The review will emphasize the main techniques based on liquid‐phase microextraction, as well as those based upon the use of sorbents. The first group includes currently popular techniques such as single drop microextraction, hollow fiber liquid‐phase microextraction, and dispersive liquid‐liquid microextraction. In the second group, solid‐phase microextraction techniques such as in‐tube solid‐phase microextraction, stir bar sorptive extraction, dispersive solid‐phase extraction, dispersive micro solid‐phase microextraction, and microextraction by packed sorbent are highlighted. These approaches, in common, aim the determination of analytes at low concentrations in complex matrices. This article describes some characteristics, recent advances, and trends on miniaturized sample preparation techniques, as well as their current applications in food, environmental, and bioanalysis fields.  相似文献   

2.
Sample preparation is a critical step in forensic analytical toxicology. Different extraction techniques are employed with the goals of removing interferences from the biological samples, such as blood, tissues and hair, reducing matrix effects and concentrating the target analytes, among others. With the objective of developing faster and more ecological procedures, microextraction techniques have been expanding their applications in the recent years. This article reviews various microextraction methods, which include solid‐based microextraction, such as solid‐phase microextraction, microextraction by packed sorbent and stir‐bar sorptive extraction, and liquid‐based microextraction, such as single drop/hollow fiber‐based liquid‐phase microextraction and dispersive liquid–liquid microextraction, as well as their applications to forensic toxicology analysis. The development trend in future microextraction sample preparation is discussed.  相似文献   

3.
Molecularly imprinted polymers for sample preparation: A review   总被引:1,自引:0,他引:1  
In spite of the huge development of analytical instrumentation during last two decades, sample preparation is still nowadays considered the bottleneck of the whole analytical process. In this regard, efforts have been conducted towards the improvement of the selectivity during extraction and/or subsequent clean-up of sample extracts. Molecularly imprinted polymers (MIPs) are stable polymers with molecular recognition abilities, provided by the presence of a template during their synthesis and thus are excellent materials to provide selectivity to sample preparation. In the present review, the use of MIPs in solid-phase extraction and solid-phase microextraction as well as its recent incorporation to other extraction techniques such as matrix-solid phase dispersion and stir bar sorptive extraction, among others, is described. The advantages and drawbacks of each methodology as well as the future expected trends are discussed.  相似文献   

4.
The use of membrane-based sample preparation techniques in analytical chemistry has gained growing attention from the scientific community since the development of miniaturized sample preparation procedures in the 1990s. The use of membranes makes the microextraction procedures more stable, allowing the determination of analytes in complex and “dirty” samples. This review describes some characteristics of classical membrane-based microextraction techniques (membrane-protected solid-phase microextraction, hollow-fiber liquid-phase microextraction and hollow-fiber renewal liquid membrane) as well as some alternative configurations (thin film and electromembrane extraction) used successfully for the determination of different analytes in a large variety of matrices, some critical points regarding each technique are highlighted.  相似文献   

5.
In the present work, a review of the analytical methods developed in the last 15 years for the determination of endocrine disrupting chemicals (EDCs) in human samples related with children, including placenta, cord blood, amniotic fluid, maternal blood, maternal urine and breast milk, is proposed. Children are highly vulnerable to toxic chemicals in the environment. Among these environmental contaminants to which children are at risk of exposure are EDCs —substances able to alter the normal hormone function of wildlife and humans—. The work focuses mainly on sample preparation and instrumental techniques used for the detection and quantification of the analytes. The sample preparation techniques include, not only liquid–liquid extraction (LLE) and solid-phase extraction (SPE), but also modern microextraction techniques such as extraction with molecular imprinted polymers (MIPs), stir-bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), dispersive liquid–liquid microextraction (DLLME), matrix solid phase dispersion (MSPD) or ultrasound-assisted extraction (UAE), which are becoming alternatives in the analysis of human samples. Most studies focus on minimizing the number of steps and using the lowest solvent amounts in the sample treatment. The usual instrumental techniques employed include liquid chromatography (LC), gas chromatography (GC) mainly coupled to tandem mass spectrometry. Multiresidue methods are being developed for the determination of several families of EDCs with one extraction step and limited sample preparation.  相似文献   

6.
On-site sampling and sample preparation favor portable, solventless or even solvent-free techniques. Solid-phase microextraction (SPME) has these advantages. This review focuses on developments between 2007 and early 2011 in microextraction techniques for on-site sampling and sample preparation, including fiber SPME, stir-bar sorptive extraction (SBSE), thin-film microextraction (TFME) and different types of in-needle SPME. The major trends in on-site applications of SPME appear to be fiber and thin-film SPME, microextraction by packed sorbent (MEPS) and the sorbent-packed needle-trap device (NTD). We discuss and compare several aspects of these types of SPME in on-site applications. We also describe sorbent phases for SPME that benefit on-site applications. Finally, we provide a perspective on SPME-based techniques for on-site applications.  相似文献   

7.
Conductive polymers (CPs) are classified as materials which exhibit highly reversible redox behavior and the unusual combined properties of metal and plastics. CPs, due to their multifunctionality, ease of synthesis and their stability, have attracted more attentions in different fields of research, including sample preparation. CPs along with several commercial hydrophilic sorbents, are alternative to the commercially available hydrophobic sorbents which despite their high specific surface areas, have poor interactions and retentions in the extraction of polar compounds. This review covers a general overview regarding the recent progress and new applications of CPs toward their synthesis and use in novel extraction and microextraction techniques including solid phase microextraction (SPME), electrochemically controlled solid-phase microextraction (EC-SPME) and other relevant techniques. Furthermore the contribution of nano-structured CPs in these methodologies is also reviewed.  相似文献   

8.
The aim of this work focuses on the application of nanomaterials (NMs) in different sorptive extraction techniques for the analysis of organic contaminants from environmental samples of distinct matrix compositions. Without any doubt, the integration of specific NMs such as carbonaceous nanomaterials, magnetic nanoparticles (MNPs), metal–organic frameworks (MOFs), silica nanoparticles, and ion-imprinted NPs with solid-phase extraction techniques counting d-SPE, solid-phase microextraction (SPME), and stir bar sorptive extraction (SBSE) impact on the improvements in analytical performance. The application of NMs as sorbents in the extraction of organic pollutants in environmental samples allows for providing better sensitivity, repeatability, reproducibility, and reusability.  相似文献   

9.
冯娟娟  孙明霞  冯洋  辛绪波  丁亚丽  孙敏 《色谱》2022,40(11):953-965
样品前处理技术在样品分析中发挥着越来越重要的作用,而对分析物的富集能力和对样品基体的净化程度主要取决于高效的样品前处理材料,所以发展高性能的样品前处理材料一直是该领域的前沿研究方向。近年来,各类先进材料已经被引入样品前处理领域,发展了多种高性能的萃取材料。由于独特的物理化学性质,石墨烯已在各个研究领域获得广泛关注,在样品前处理领域也发挥着重要作用。基于高的比表面积、大的π电子结构、优异的吸附性能、丰富的官能团和易于化学改性等优点,石墨烯和氧化石墨烯基萃取材料被成功应用于各种样品的前处理,对不同领域中多种类型分析物表现出优异的萃取性能。该论文总结和讨论了近3年来石墨烯材料(石墨烯、氧化石墨烯及其功能化材料)在柱固相萃取、分散固相萃取、磁性固相萃取、搅拌棒萃取、纤维固相微萃取和管内固相微萃取等方面的研究进展。基于多种萃取机理如π-π、静电、疏水、亲水、氢键等相互作用,石墨烯萃取材料能够高效萃取和选择性富集不同类别的目标分析物,如重金属离子、多环芳烃、塑化剂、雌激素、药物分子、农药残留、兽药残留等。基于新型石墨烯萃取材料的各种样品前处理技术与多种检测技术如色谱、质谱、原子吸收光谱等联用,广泛应用于环境监测、食品安全和生化分析等领域。最后,总结了石墨烯在样品前处理领域中存在的问题,并展望了未来的发展趋势。  相似文献   

10.
Silicones have innumerable applications in many areas of life. Polydimethylsiloxane (PDMS), which belongs to the class of silicones, has been extensively used in the field of analytical chemistry owing to its favourable physicochemical properties. The use of PDMS in analytical chemistry gained importance with its application as a stationary phase in gas chromatographic separations. Since then it has been used in many sample preparation techniques such as solid phase microextraction (SPME), stir bar sorptive extraction (SBSE), thin-film extraction, permeation passive sampling, etc. Further, it is gaining importance in the manufacturing of lab-on-a-chip devices, which have revolutionized bio-analysis. Applications of devices containing PDMS and used in the field of analytical chemistry are reviewed in this paper.  相似文献   

11.
The use of cosmetics and personal care products is increasing worldwide. Their high matrix complexity, together with the wide range of products currently marketed under different forms imply a challenge for their analysis, most of them requiring a sample pre-treatment step before analysis. Classical sample preparation methodologies involve large amounts of organic solvents as well as multiple steps resulting in large time consumption. Therefore, in recent years, the trends have been moved towards the development of simple, sustainable, and environmentally friendly methodologies in two ways: (i) the miniaturization of conventional procedures allowing a reduction in the consumption of solvents and reagents; and (ii) the development and application of sorbent- and liquid-based microextraction technologies to obtain a high analyte enrichment, avoiding or significantly reducing the use of organic solvents. This review provides an overview of analytical methodology during the last ten years, placing special emphasis on sample preparation to analyse cosmetics and personal care products. The use of liquid–liquid and solid–liquid extraction (LLE, SLE), ultrasound-assisted extraction (UAE), solid-phase extraction (SPE), pressurized liquid extraction (PLE), matrix solid-phase extraction (MSPD), and liquid- and sorbent-based microextraction techniques will be reviewed. The most recent advances and future trends including the development of new materials and green solvents will be also addressed.  相似文献   

12.
固相萃取技术在食品痕量残留和污染分析中的应用   总被引:3,自引:0,他引:3  
Li G  Ma G 《色谱》2011,29(7):606-612
食品痕量残留和污染分析中,样品的前处理极为重要,也是其难点所在。由于食品和农产品样品的多样性和复杂性,目前还没有一种前处理技术能够适合所有情况下的所有样品。本文对近年来发展起来的新型固相萃取技术如固相微萃取、搅拌棒吸附萃取、基质固相分散萃取、分子印迹固相萃取、免疫亲和固相萃取、整体柱固相萃取、碳纳米管固相萃取等在食品痕量残留和污染分析中的应用进行了综述,对未来的发展前景作了展望。  相似文献   

13.
Green extraction techniques (GreETs) emerged in the last decade as greener and sustainable alternatives to classical sample preparation procedures aiming to improve the selectivity and sensitivity of analytical methods, simultaneously reducing the deleterious side effects of classical extraction techniques (CETs) for both the operator and the environment. The implementation of improved processes that overcome the main constraints of classical methods in terms of efficiency and ability to minimize or eliminate the use and generation of harmful substances will promote more efficient use of energy and resources in close association with the principles supporting the concept of green chemistry. The current review aims to update the state of the art of some cutting-edge GreETs developed and implemented in recent years focusing on the improvement of the main analytical features, practical aspects, and relevant applications in the biological, food, and environmental fields. Approaches to improve and accelerate the extraction efficiency and to lower solvent consumption, including sorbent-based techniques, such as solid-phase microextraction (SPME) and fabric-phase sorbent extraction (FPSE), and solvent-based techniques (μQuEChERS; micro quick, easy, cheap, effective, rugged, and safe), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), in addition to supercritical fluid extraction (SFE) and pressurized solvent extraction (PSE), are highlighted.  相似文献   

14.
Kimchi is a traditional fermented vegetable, known for its complex flavor. Herein, we compared compounds related to the kimchi flavor, identified by gas chromatography-mass spectrometry (GC-MS) with the developed solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE) techniques. Although headspace-solid phase microextraction (HS-SPME) detected more volatile compounds than nondestructive-headspace-solid-phase microextraction (ND-HS-SPME), those identified by ND-HS-SPME were considered closely related to the flavor of the intact kimchi. Furthermore, direct immersion-stir bar sorptive extraction (DI-SBSE) detected more volatile and nonvolatile compounds than headspace-stir bar sorptive extraction (HS-SBSE), while more sulfur compounds were identified by HS-SBSE. Therefore, we recommend the use of the HS-SPME method using a divinylbenzene/carboxen/polydimethylsiloxane fiber for identifying compounds related to the kimchi flavor. In addition, principal component analysis showed ND-HS-SPME and HS-SBSE to be closely clustered. Overall, we estimated that the samples obtained via the nondestructive sample preparation emits fewer polar volatile flavor compounds than those obtained using the destructive sample preparation. Considering the findings presented herein, we believe that this study contributes to optimizing the flavor analysis of kimchi and other fermented vegetables.  相似文献   

15.
Simplicity, effectiveness, swiftness, and environmental friendliness – these are the typical requirements for the state of the art development of green analytical techniques. Liquid phase microextraction (LPME) stands for a family of elegant sample pretreatment and analyte preconcentration techniques preserving these principles in numerous applications. By using only fractions of solvent and sample compared to classical liquid–liquid extraction, the extraction kinetics, the preconcentration factor, and the cost efficiency can be increased. Moreover, significant improvements can be made by automation, which is still a hot topic in analytical chemistry. This review surveys comprehensively and in two parts the developments of automation of non-dispersive LPME methodologies performed in static and dynamic modes. Their advantages and limitations and the reported analytical performances are discussed and put into perspective with the corresponding manual procedures. The automation strategies, techniques, and their operation advantages as well as their potentials are further described and discussed.  相似文献   

16.
The application of graphene‐based sorbents in sample preparation techniques has increased significantly since 2011. These materials have good physicochemical properties to be used as sorbent and have shown excellent results in different sample preparation techniques. Graphene and its precursor graphene oxide have been considered to be good candidates to improve the extraction and concentration of different classes of target compounds (e.g., parabens, polycyclic aromatic hydrocarbon, pyrethroids, triazines, and so on) present in complex matrices. Its applications have been employed during the analysis of different matrices (e.g., environmental, biological and food). In this review, we highlight the most important characteristics of graphene‐based material, their properties, synthesis routes, and the most important applications in both off‐line and on‐line sample preparation techniques. The discussion of the off‐line approaches includes methods derived from conventional solid‐phase extraction focusing on the miniaturized magnetic and dispersive modes. The modes of microextraction techniques called stir bar sorptive extraction, solid phase microextraction, and microextraction by packed sorbent are discussed. The on‐line approaches focus on the use of graphene‐based material mainly in on‐line solid phase extraction, its variation called in‐tube solid‐phase microextraction, and on‐line microdialysis systems.  相似文献   

17.
18.
Approaches are described for on-line and off-line sample pretreatment of liquid samples utilising liquid- and adsorbent- and sorbent-phase microextraction methodologies with GC analysis. Solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), on-line solid-phase extraction (SPE), liquid-phase microextraction (LPME) and membrane-assisted methods are critically evaluated and the applicability of each technique is demonstrated with examples.  相似文献   

19.
近年来,与实时直接分析质谱(DART-MS)相结合的样品预处理技术发展迅速,使得对复杂生物、环境、法医学、食品、个体小生物以及单细胞样品中的分析物进行直接分析成为可能。然而固体基质内部分析物检测困难、痕量分析物检测性能不佳已成为限制DART-MS进一步发展的关键问题。针对这些问题,多年来,研究人员在不同领域对样品预处理与质谱联用进行了多种尝试。该文以固相萃取(SPE)、分散固相萃取(DSPE)、搅拌棒吸附萃取(SBSE)、固相微萃取(SPME)、机械化学提取(MCE)和微波提取(MAE)等样品预处理技术为例,对不同研究领域中样品预处理技术与DART-MS联用的研究成果进行了综述,并对未来的发展趋势进行了展望。希望该综述能为开发与DART-MS联用的新型样品处理技术提供参考和帮助。  相似文献   

20.
New materials in sorptive extraction techniques for polar compounds   总被引:1,自引:0,他引:1  
This paper provides an overview of the new developments in material and format technology that improve the extraction of polar compounds in several extraction techniques. They mainly include solid-phase extraction, but there are also other sorptive extraction techniques, such as stir bar sorptive extraction and solid-phase microextraction that use either fibers or in-tube devices. We focus on new synthesised materials that are both commercially available and "in-house". Most novel materials that enhance the extraction of polar compounds are hydrophilic and have large specific surface area; however, we also cover other leading technologies, such as sol-gel or monolith. We describe the morphological and chemical properties of these new sorbents so that we can better understand them and relate them to their capability of retaining polar compounds. We discuss the extraction efficiency for polar compounds when these polymers are used as sorptive material and compare them to other materials. We also mention some representative examples of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号