首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
吕业刚  梁晓琳  谭永宏  郑学军  龚跃球  何林 《物理学报》2011,60(2):27701-027701
采用金属有机物分解法在Pt/Ti/Si(111)基底上制备了退火温度分别为600℃,650℃,700℃的Bi3.15Eu0.85Ti3O12(BET)铁电薄膜,并对其结构及铁电性能进行了测试,再使用扫描探针显微镜对BET薄膜的电畴翻转进行了实时观测.BET薄膜c畴发生180°畴变的最小电压为+6V,而r畴由于其高四方性,即使极化电压增至+12V也不会发生翻转.薄膜的铁电性主要源于c畴的极化,随着退火温度的升高,c畴的区域面积增加,BET薄膜的剩余极化强度随之增大.退火温度为700℃的BET薄膜剩余极化强度达到84μC/cm2. 关键词: 铁电薄膜 电畴翻转 扫描探针显微镜  相似文献   

2.
Microstructural and electrical properties of PZT (lead zirconate titanate) thin films prepared by sol-gel techniques at annealing temperatures in the range from 550°C to 900°C are studied. Perovskite (Pe) grain nucleation in PZT film starts but not completes at 550°C. Along with formation of round Pe (111) grains on the Pt (111) interface, the film contains small Pe and pyrochlore (Py) grains. Films annealed at the temperatures higher than 600°C demonstrate column structure of Pe grains, the amount of Py inclusions reduces with the annealing temperature and practically disappears at 700°C. An increase of annealing temperature leads to enhancement of (100) Pe orientation as a result of Ti diffusion on the Pt surface. Polarization decreases with the annealing temperature (maximum at 600°C), whereas permittivity increases up to the annealing temperature of 750°C.  相似文献   

3.
PbTiO3 (PTO) nanotubes (NTs) were synthesized at various temperatures by gas phase reaction between PbO gas and anatase TiO2 NTs and characterized by piezoresponse force microscopy (PFM). PTO ferroelectric phase was synthesized at as low as 400 °C as evidenced by PFM domain images and piezoresponse hysteresis loop measurement. Furthermore, the PTO NTs fabricated at above 500 °C underwent mechanical fracture through development of nanocracks due to grain growth, leading to ferroelectric domains with larger size and lower aspect ratio. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The formation of nanoparticles in СZn-Si(100) implanted with 64Zn+ ions using a dose of 5 × 1016 cm–2 and an energy of 50 keV at room temperature with subsequent thermal processing in oxygen at temperatures ranging from 400 to 900°C is studied. The surface topology is investigated with scanning electron (in the secondary emission mode) and atomic force microscopes. The structure and composition of the near-surface silicon layer are examined using a high-resolution transmission electronic microscope fitted with a device for energy dispersive microanalysis. An amorphized near-surface Si layer up to 130 nm thick forms when zinc is implanted. Amorphous zinc nanoparticles with an average size of 4 nm are observed in this layer. A damaged silicon layer 50 nm thick also forms due to radiation defects. The metallic zinc phase is found in the sample after low-temperature annealing in the range of 400–600°C. When the annealing temperature is raised to 700°C, zinc oxide ZnO phase can form in the near-surface layer. The complex ZnO · Zn2SiO4 phase presumably emerges at temperatures of 800°C or higher, and zinc-containing nanoparticles with lateral sizes of 20–50 nm form on the sample’s surface.  相似文献   

5.
Ruthenium (Ru) Schottky contacts and thin films on n-type 6H–SiC were fabricated and characterised by physical and electrical methods. The characterisation was done after annealing the samples in air at various temperatures. Rutherford backscattering spectroscopy (RBS) analysis of the thin films indicated the oxidation of Ru after annealing at a temperature of 400 °C, and interdiffusion of Ru and Si at the Ru–6H–SiC interface at 500 °C. XRD analysis of the thin films indicated the formation of RuO2 and RuSi in Ru–6H–SiC after annealing at a temperature of 600 °C. The formation of the oxide was also corroborated by Raman spectroscopy. The ideality factor of the Schottky barrier diodes (SBD) was seen to generally decrease with annealing temperature. The series resistance increased astronomically after annealing at 700 °C, which was an indication that the SBD had broken down. The failure mechanism of the SBD is attributed to deep inter-diffusions of Ru and Si at the Ru–6H–SiC interface as evidenced by the RBS of the thin films.  相似文献   

6.
The effect of ionizing gamma irradiation on the frequency and temperature dependences of the permittivity ε’(T) for lead scandoniobate relaxor (disordered) ferroelectric ceramics before and after thermal annealing was investigated by low-and infralow-frequency dielectric spectroscopy. It was demonstrated that the irradiation leads to a shift in the temperatures of the maxima in the dependence ε’(T) and the temperatures of the maxima in the dependence of the dispersion depth Δε’(T) toward the high-temperature range, as well as to the suppression of high-temperature (~ 300–400°C) polarization relaxation. After annealing at a temperature T ~ 600°C, the properties of the material were partially recovered.  相似文献   

7.
Lead‐free (Na0.5Bi0.5)0.94TiO3–Ba0.06TiO3 (NBT‐BT6) nanofibers were synthesized by the sol–gel process and electrospinning, and a butterfly‐shaped piezoelectric response was measured by scanning force microscopy. NBT‐BT6 nanofibers with perovskite phase were formed, after being cleaned at 700 °C for 1 hour, and the diameters are in the range of 150 nm to 300 nm. The average value of the effective piezoelectric coefficient d33 is 102 pm/V. The high piezoelectricity may be attributed to the easiness for the electric field to tilt the polar vector of the domain and to the increase of the possible spontaneous polarization direction. There is a potential for the application of NBT‐BT6 nanofibers in nanoscale piezoelectric devices. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The ferroelectric domain wall thickness of a fluoride BaMgF4 single crystal was investigated by piezoresponse force microscopy. It was found that the domain wall thickness shows a strong spatial variation in the as‐grown crystal and the polarization reversal process. The original wall thickness is greater (about two to seven times) than that switched by the tip fields of the atomic force microscope. A significantly narrower domain wall was obtained in the higher tip‐field. The trapped defects at the domain wall play an important role in the spatial variation of the polarization width of 180° domain wall in the BaMgF4 single crystal. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The large piezoelectric coefficient and multiferroicity of bismuth ferrite (BFO) make it an attractive candidate for lead-free ferroelectric devices. However, large leakage currents have limited broader applications. Rare-earth substitutions in BFO have been shown to improve ferroelectric and magnetic properties. In this work, we employed piezoresponse and conductive atomic force microscopy to study ferroelectric domains in Bi1-xSmxFeO3 (x = 0–0.150) grown by the co-precipitation method. The combined piezoresponse and conductivity measurements can directly visualize the local ferroelectric domains under different sample bias. At Sm mol% > 7.5, Sm-substitution effectively lowers defect-generated conductivity. At Sm mol% < 7.5, conductivity increases due to conductive domain walls inside sample grains. The surfaces of these conductive samples exhibit a p-type rectifying behavior while the bulk is n-type. Our work details how the local piezoelectric properties and transport behaviors of BFO ceramics change as a function of Sm-substitution.  相似文献   

10.
The spectral and structural characteristics of lithium borate glasses containing europium and aluminum have been investigated upon annealing at different temperatures. It has been found that the spectral characteristics of the studied system change nonmonotonically with an increase in the annealing temperature. After annealing at a temperature of 600°C, the luminescence spectra of the glasses exhibit broad structureless bands that are specific for the amorphous phase containing Eu3+ ions. Then, after annealing at T = 700°C, narrow lines appear in the wavelength ranges 585–595 and 610–620 nm, which correspond to the luminescence of the Eu(BO2)3 and EuAl3(BO3)4 borates. A further increase in the annealing temperature (T = 800–900°C) leads to the disappearance of europium aluminum borate. In the luminescence spectra of these samples, there are narrow bands in the wavelength range λ = 585–595 nm, which are typical of europium metaborate. Finally, at a temperature of 1050°C, these bands disappear and narrow lines appear again in the wavelength range 610–620 nm, which are characteristic of the EuAl3(BO3)4 borate. Thus, the temperature annealing makes it possible to purposely change the spectral characteristics of the studied system in the wavelength range 590–615 nm.  相似文献   

11.
Hydrothermal method was used to prepare TiO2 nanoparticles with annealing temperature at 500 °C–700 °C. The mixture of anatase-rutile phase was investigated by powerful tool of X-ray diffraction (XRD). The structural parameters of anatase and rutile mixture phaseTiO2 nanoparticles were calculated from the Rietveld refinement. The transformation rate of rutile was increased linearly with an annealing temperature of 500 °C–700 °C. The spherical morphology of the anatase and rutile mixed phase were obtained by scanning electron microscope and transmission electron microscope. The spherical particle of the anatase and rutile TiO2 shows with great aggregation with different size and within the range of few tens nm. The EDAX study revealed the presence of titanium and oxygen. The best photocatalytic activity was identified as the 87.04% of anatase and 12.96% of rutile mixer phase of TiO2. Various factors could be involved for a better photocatalytic activity.  相似文献   

12.
Effect of the sintering temperature on the formation of the microstructure, the domain structure, and the ferroelectric properties of a lead zirconate–titanate Pb(Ti x Zr1 – x)O3 piezoelectric ceramics has been studied. It is shown that the ferroelectric phase forms at a sintering temperature of 860°C. At higher sintering temperatures, the main effect on the properties is due to a unit cell deformation and free charge carriers.  相似文献   

13.
In this study, thermoluminescence (TL) properties of the biogenic minerals present in the seashell samples at different temperatures and annealing times have been studied. Three explicit peaks are seen in the glow curves roughly at 100°C, 180°C, and 380°C. One of the prominent results is that annealing above 600°C affects enormously the TL intensity, whereas no remarkable TL intensity is observed for unannealed samples. The highest intensity and area under the curve were observed at 700°C annealing temperature, and 180 minutes annealing time and 1500 times bigger than the unannealed samples. A linear dose response is observed between 2.4 and 72?Gy and beyond this value, a sublinear relation is observed. Unfortunately, a huge decrease in TL intensity is observed about 51% of its initial value, after 5 hours of storage time.  相似文献   

14.
Effect of annealing temperature on characteristics of sol–gel driven ZnO thin film spin-coated on Si substrate was studied. The UV–visible transmittance of the sol decreased with the increase of the aging time and drastically reduced after 20 days aging time. Granular shape of ZnO crystallites was observed on the surface of the films annealed at 550, 650, and 750 °C, and the crystallite size increased with the increase of the annealing temperature. Consequently nodular shape of crystallites was formed upon increasing the annealing temperature to 850 °C and above. The current–voltage characteristics of the Schottky diodes fabricated with ZnO thin films with various annealing temperatures were measured and analyzed. It is found that, ZnO films showed the Schottky characteristics up to 750 °C annealing temperature. The Schottky diode characteristics were diminished upon increasing the annealing temperature above 850 °C. XPS analysis suggested that the absence of oxygen atoms in its oxidized state in stoichiometric surrounding, might be responsible for the diminished forward current of the Schottky diode when annealed above 850 °C.  相似文献   

15.
ZnO thin films were first prepared on Si(111) substrates using a radio frequency magnetron sputtering system. Then the as-grown ZnO films were annealed in oxygen ambient at temperatures of 700, 800, 900, and 1000°C , respectively. The morphologies of ZnO films were studied by an atom force microscope (AFM). Subsequently, GaN epilayers about 500 nm thick were deposited on the ZnO buffer layers. The GaN/ZnO films were annealed in NH3 ambient at 900°C. The microstructure, morphology and optical properties of GaN films were studied by x-ray diffraction (XRD), AFM, scanning electron microscopy (SEM) and photoluminescence (PL). The results are shown, their properties having been investigated particularly as a function of the ZnO layers. For better growth of the GaN films, the optimal annealing temperature of the ZnO buffer layers was 900°C.  相似文献   

16.
14 /cm2 dose of As ions followed by both isochronal and isothermal annealing. The elementary defects generated first during solid-phase epitaxial recovery of implantation-induced amorphous layers at temperatures of 550 °C and/or 600 °C are {311} defects 2–3 nm long. They are considered to be transformed into {111} and {100} defects after annealing at temperatures higher than 750 °C. These secondary defects show the opposite annealing behavior to the dissolution and growth by the difference of their depth positions at 800 °C. This phenomenon is explained by the diffusion of self-interstitials contained in defects. With regard to the formation and dissolution of defects, there is no significant difference between the effects of rapid thermal annealing (950 °C for 10 s) and furnace annealing (800 °C for 10 min). Received: 14 November 1997/Accepted: 16 November 1997  相似文献   

17.
Polarization reversal in ferroelectric nanomesas of polyvinylidene fluoride with trifluoroethylene has been probed by ultrahigh vacuum piezoresponse force microscopy in a wide temperature range from 89 to 326 K. In dramatic contrast to the macroscopic data, the piezoresponse force microscopy local switching was nonthermally activated and, at the same time, occurring at electric fields significantly lower than the intrinsic switching threshold. A "cold-field" defect-mediated extrinsic switching is shown to be an adequate scenario describing this peculiar switching behavior. The extrinsic character of the observed polarization reversal suggests that there is no fundamental bar for lowering the coercive field in ferroelectric polymer nanostructures, which is of importance for their applications in functional electronics.  相似文献   

18.
It is well known that the thermal history of a quartz sample influences the optically stimulated luminescence sensitivity of the quartz. It is found that the optically stimulated luminescence lifetime, determined from time resolved spectra obtained with pulsed stimulation, also depends on past thermal treatment. For samples at 20°C during stimulation, the lifetime depends on beta dose and on duration of preheating at 220°C prior to stimulation for quartz annealed at 600°C and above, but is independent of these factors for quartz annealed at 500°C and below. For stimulation at higher temperatures, the lifetime becomes shorter if the sample is held at temperatures above 125°C during stimulation, in a manner consistent with thermal quenching. A single exponential decay is all that is required to fit the time resolved spectra for un-annealed quartz regardless of the temperature during stimulation (20–175°C), or to fit the time resolved spectra from all samples held at 20°C during stimulation, regardless of annealing temperature (20–1000°C). An additional shorter lifetime is found for some combinations of annealing temperature and temperature during stimulation. The results are discussed in terms of a model previously used to explain thermal sensitisation. The luminescence lifetime data are best explained by the presence of two principal luminescence centres, their relative importance depending on the annealing temperature, with a third centre involved for limited combinations of annealing temperature and temperature during stimulation.  相似文献   

19.
In this work, ZnO coatings were fabricated by the RF-sputtering method on quartz substrates in an inert gas ambient of Ar followed by a thermal oxidation process in air at different temperatures. The effect of thermal oxidation temperatures on the structures and photoluminescence (PL) properties of the coatings were studied. The structural characteristics of the samples were analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM). The PL spectra were obtained by using a Xe laser as a light source with an excitation wavelength of 325 nm at room temperature. The force-curves were obtained by AFM. The results show that all the prepared ZnO coatings have a compact hexagonal wurtzite structure. With the increasing annealing temperature from 400 °C to 600 °C, the particle size, surface RMS roughness, photoluminescence intensity and adhesion force of the prepared ZnO coatings were increased as well.  相似文献   

20.
《Current Applied Physics》2020,20(9):1031-1035
We report the deposition of epitaxial SrHfO3 thin films on a SrTiO3 (001) substrate in different substrate temperatures by using a pulsed laser deposition (PLD) method. We carried out X-ray diffraction (XRD), X-ray reflectivity (XRR), reciprocal space mapping (RSM), atomic force microscopy (AFM), resistivity, and Hall measurements to examine the crystallinity, morphology and electrical properties of these films. All films showed smooth and uniform morphology with small root mean square (RMS) roughness. While the SrHfO3 sample grown at 750 °C is metallic, the films deposited at 600 °C, 650 °C, and 700 °C show an upturn at low temperatures. The temperature dependence of the metallic parts was analyzed based on the parallel resistor model that includes resistivity saturation. On the other hand, the low-temperature upturn was found to be well described by a weak localization mechanism. We also observed the possible emergence of non-Fermi liquid behavior when the upturn disappeared. All SrHfO3 films have p-type charge carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号