首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A magnetic domain wall (DW) injected and pinned at a notch in a permalloy nanowire is shown to exhibit four well-defined magnetic states, vortex and transverse, each with two chiralities. These states, imaged using magnetic force microscopy, are readily detected from their different resistance values arising from the anisotropic magnetoresistance effect. Whereas distinct depinning fields and critical depinning currents in the presence of magnetic fields are found, the critical depinning currents are surprisingly similar for all four DW states in low magnetic fields. We observe current-induced transformations between these DW states below the critical depinning current which may account for the similar depinning currents.  相似文献   

2.
We report micromagnetic modeling results of current induced domain wall (DW) motion in magnetic devices with perpendicular magnetic anisotropy by solving the Landau-Lifschitz-Gilbert equation including adiabatic and non-adiabatic terms. A nanostripe model system with dimensions of 500 nm (L)×25 nm (W)×5 nm (H) was selected for calculating the DW motion and its width, as a function of various parameters such as non-adiabatic contribution, anisotropy constant (Ku), saturation magnetization (Ms), and temperature (T). The DW velocity was found to increase when the values of Ku and T were increased and the Ms value decreased. In addition, a reduction of the domain wall width could be achieved by increasing Ku and lowering Ms values regardless of the non-adiabatic constant value.  相似文献   

3.
Full-field magnetic transmission x-ray microscopy at high spatial resolution down to 20 nm is used to directly observe field-driven domain wall motion in notch-patterned permalloy nanowires. The depinning process of a domain wall around a notch exhibits a stochastic nature in most nanowires. The stochasticity of the domain wall depinning sensitively depends on the geometry of the nanowire such as the wire thickness, the wire width, and the notch depth. We propose an optimized design of the nanowire for deterministic domain wall depinning field at a notch.  相似文献   

4.
Ordered 20 nm Fe-Pd nanowire arrays with different compositions have been fabricated by alternating current electrodeposition into nanoporous anodic alumina. The structural and magnetic properties of the arrays were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). When Fe content is lower than 46 at.%, Fe-Pd alloy phase with fcc structure forms for the as-deposited. After annealing the alloy structure remains unchanged, but the coercivity (HC) and squareness (Mr/Ms) increase. When Fe content is up to 60 at.%, α-Fe and Fe-Pd phases with fcc structure coexist for the as-deposited. After annealing the nanowires consist of a uniform Fe-Pd phase with fcc structure and the coercivity and squareness decrease. The change of the structure and magnetic properties with the alloy composition and annealing are explained reasonably.  相似文献   

5.
Nanometer scale observation of the depinning of a narrow domain wall (DW) under a spin current is reported. We studied approximately 12 nm wide 1D Bloch DWs created in thin films exhibiting perpendicular magnetic anisotropy. Magnetotransport measurements reveal thermally assisted current-driven DW motion between pinning sites separated by as little as 20 nm. The efficiency of current-driven DW motion assisted by thermal fluctuations is measured to be orders of magnitude higher than has been found for in-plane magnetized films, allowing us to control DW motion on a nanometer scale at low current densities.  相似文献   

6.
《Applied Surface Science》2005,239(3-4):279-284
Fe0.3Co0.7 alloy nanowire arrays were prepared by ac electrodepositing Fe2+ and Co2+ into a porous anodic aluminum oxide (PAO) template with diameter about 50 nm. The surface of the samples were polished by 100 nm diamond particle then chemical polishing to give a very smooth surface (below ±10 nm/μm2). The morphology properties were characterized by SEM and AFM. The bulk magnetic properties and domain structure of nanowire arrays were investigated by VSM and MFM respectively. We found that such alloy arrays showed strong perpendicular magnetic anisotropy with easy axis parallel to nanowire arrays. Each nanowire was in single domain structure with several opposite single domains surrounding it. Additionally, we investigated the domain structure with a variable external magnetic field applied parallel to the nanowire arrays. The MFM results showed a good agreement with our magnetic hysteresis loop.  相似文献   

7.
We investigate current-driven domain wall (DW) propagation in magnetic nanowires in the framework of the modified Landau-Lifshitz-Gilbert equation with both adiabatic and nonadiabatic spin torque (AST and NAST) terms. By employing a simple analytical model, we can demonstrate the essential physics that any small current density can drive the DW motion along a uniaxial anisotropy nanowire even in absence of NAST, while a critical current density threshold is required due to intrinsic anisotropy pinning in a biaxial nanowire without NAST. The DW motion along the uniaxial wire corresponds to the asymptotical DW oscillation solution under high field/current in the biaxial wire case. The current-driven DW velocity weakly depends on the NAST parameter β in a uniaxial wire and it is similar to the β = α case (α: damping) in the biaxial wire. Apart from that, we discuss the rigid DW motion from both the energy and angular momentum viewpoints and point out some physical relations in between. We also propose an experimental scheme to measure the spin current polarization by combining both field- and current-driven DW motion in a usual flat (biaxial) nanowire.  相似文献   

8.
In the search for new physical properties of S/F structures, we have found that the superconductor critical current can be controlled by the domain state of the neighboring ferromagnet. The superconductor is a thin wire of thickness ds ≈2ξS. Nb/Co and Nb/Py (Permalloy Ni80Fe20) bilayer structures were grown with a significant magnetic anisotropy. Critical current measurements of Nb/Co structures with ferromagnet thickness dF > 30 nm show sudden drops in two very defined steps when the measurements are made along the hard axes direction (i.e. current track parallel to hard anisotropy axes direction). These drops disappear when they are made along the easy axis direction or when the ferromagnet thickness is below 30 nm. The drops are accompanied by vortex flux flow. In addition magnetorestistance measurements close to TC show a sharp increase near saturation fields of the ferromagnet. Similar results are reproduced in Nb/Py bilayer structure with the ferromagnet thickness dF ~ 50 nm along the easy anisotropy axes. These results are explained as being due to spontaneous vortex formation and flow induced by Bloch domain walls of the ferromagnet underneath. We argue these Bloch domain walls produce a 2D vortex-antivortex lattice structure.  相似文献   

9.
Co/Pt multilayer dots with perpendicular anisotropy and with diameters of 250 and 350 nm were fabricated on top of a Hall cross configuration. The angular dependence of the magnetic reversal of the individual dot was investigated by Anomalous Hall effect measurements. At near in-plane angles (85° with the magnetic easy axis) the dot switches partially into a stable two-domain state. This allows for separate analysis of the angular dependence of both the field required for nucleation of a reversed domain, and the field required for depinning of the domain wall. The angular dependence of the depinning field fits accurately to a 1/cos(θ) behavior, whereas the angular dependence of the nucleation field shows a minimum close to 45°. The latter dependency can be accurately fitted to the modified Kondorsky model proposed by Schumacher [1].  相似文献   

10.
We studied the domain wall (DW) dynamics of magnetically bistable amorphous glass-coated Fe74B13Si11C2 microwires. In according to our experimental results magnetic field dependences of DW velocity of studied microwires can be divided into two groups: with uniform or uniformly accelerated DW propagation along the microwire. Strong correlation between the type of the magnetic field dependence of domain wall velocity, v(H), and the distribution of the local nucleation fields has been observed.Moreover, we observed abrupt increasing of DW velocity (jump) on the magnetic field dependences of the domain wall velocity, v(H), for the both types of the v(H) dependences. At the same time usual linear increasing of the domain wall velocity with magnetic field persists below these jumps. It was found that the jump height correlates with the location of nucleation place of the new domain wall. We have measured local nucleation field distribution in all the microwires. From local nucleation field distribution we have obtained the DW nucleation locations and estimated the jump height  相似文献   

11.
Ni nanowire arrays with varying wire dimensions (diameter d, length l) and center-to-center distances dCC were synthesized by pulsed electrodeposition of Ni in porous Al templates. The magnetization-reversal behavior of the arrays was investigated by means of magnetometry for different angles θ between the wire axes and the applied magnetic field. The functional dependences of the characteristic parameters coercivity HC(θ) and reduced remanence mR/mS(θ) exhibit a strong dependence on the wire dimensions and the center-to-center distance. For instance, for nanowire arrays with d=40 nm, dCC=100 nm, and for θ=0°, the coercivity takes on a rather large value of μ0HC=85 mT and mR/mS≅94%; reducing dCC to 30 nm and d to 17 nm results in μ0HC=49 mT and mR/mS≅57%, an observation which suggests an increasing magnetostatic interwire interaction at increased (d/dCC)-ratio. The potential application of nanowires as the constituents of ferrofluids is discussed.  相似文献   

12.
The dynamics of a two-dimensional vortex system with strong periodic square columnar pins is investigated. For the case vortex number matching pinning number, we find that the vortex liquid is frozen into square lattice via a continuous transition, and the freezing (melting) temperature Tm is the same as the thermal depinning temperature of vortices, which are different from the first-order phase transition at weak pinning. The zero-temperature critical depinning force Fc0 is exactly the same as the maximum pinning force, and the depinning property at T = 0 can be expressed by scaling v  (F ? Fc0)β with the exponent β close to 0.5. The vF curves at temperatures below Tm show that vortices are pinned at small driving force.  相似文献   

13.
We studied the domain wall (DW) propagation of magnetically-bistable Fe–Co-rich microwires paying attention to the effect of applied and internal stresses. Magnetic field, H, dependences of DW velocity, v, were measured in Co41.7Fe36.4Si10.1B11.8 microwires with metallic nucleus diameters (from 13 μm to 18 μm) and with different ρ-ratio between the metallic nucleus diameter, d, and total microwire diameter, D. DW velocity decreased under the application of stresses. From measured dependences we evaluated DW mobility, S, dependence on the applied stresses. The results obtained for Co41.7Fe36.4Si10.1B11.8 sample show that S decreases with the increasing of applied stresses, σa. The observed dependences manifest that increasing of magnetoelastic anisotropy results in the decreasing of DW mobility and DW velocity  相似文献   

14.
Ferromagnetic domain-wall pinning and depinning mechanisms were investigated at permalloy nanowire notches using a micromagnetic calculation. A unique depinning field originated from the symmetric double notches irrespective of the wall polarity or the propagation direction, whereas several distinct pinning mechanisms appeared from single or asymmetric notches. The depinning field was principally determined by the exiting notch slope due to the dynamic narrowing of the domain wall thickness.  相似文献   

15.
Magnetic domain wall behaviors in CoPt nanowires consisting of multiple pairs of notches were investigated by experimental measurements as well as by micromagnetic modeling. The nanowires were fabricated by ion-beam sputter deposition and e-beam lithography where one to three triangular shaped notches were installed at an interval of 1 μm. Based on the evaluated I–V characteristics, we observed that differential resistance curves showed two peaks with a local minimum at around zero current; the domain wall was trapped between the current ranges within these two peaks. As the number of notch was increased, the resistance of the nanowire became larger.  相似文献   

16.
YBa2Cu3O7?x (Y123) films with quantitatively controlled artificial nanoprecipitate pinning centers were grown by pulsed laser deposition (PLD) and characterized by transport over wide temperature (T) and magnetic field (H) ranges and by transmission electron microscopy (TEM). The critical current density Jc was found to be determined by the interplay of strong vortex pinning and thermally activated depinning (TAD), which together produced a non-monotonic dependence of Jc on c-axis pin spacing dc. At low T and H, Jc increased with decreasing dc, reaching the very high Jc  48 MA/cm2 ~20% of the depairing current density Jd at 10 K, self-field and dc  10 nm, but at higher T and H when TAD effects become significant, Jc was optimized at larger dc because longer vortex segments confined between nanoprecipitates are less prone to thermal fluctuations. We conclude that precipitates should extend at least several coherence lengths along vortices in order to produce irreversibility fields Hirr(77 K) greater than 7 T and maximum bulk pinning forces Fp,max(77 K) greater than 7–8 GN/m3 (values appropriate for H parallel to the c-axis). Our results show that there is no universal pin array that optimizes Jc at all T and H.  相似文献   

17.
Fe3O4 nanowire arrays with different diameters of D=50, 100, 150 and 200 nm were prepared in anodic aluminum oxide (AAO) templates by an electrodeposition method followed by heat-treating processes. A vibrating sample magnetometer (VSM) and a Quantum Design SQUID MPMS magnetometer were used to investigate the magnetic properties. At room temperature the nanowire arrays change from superparamagnetism to ferromagnetism as the diameter increases from 50 to 200 nm. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements show that the blocking temperature TB increases with the diameter of nanowire. The ZFC curves of D=50 nm nanowire arrays under different applied fields (H) were measured and a power relationship between TB and H were found. The temperature dependence of coercivity below TB was also investigated. Mössbauer spectra and micromagnetic simulation were used to study the micro-magnetic structure of nanowire arrays and the static distribution of magnetic moments of D=200 nm nanowire arrays was investigated. The unique magnetic behaviors were interpreted by the competition of the demagnetization energy of quasi-one-dimensional nanostructures and the magnetocrystalline anisotropy energy of particles in nanowires.  相似文献   

18.
Ba(ZrxTi1?x)O3 (0.025 ≤ x ≤ 0.065) ceramics were prepared by conventional solid-state reaction method. Crystalline structures were analyzed by X-ray diffraction. It was shown that all the Ba(ZrxTi1?x)O3 (0.025 ≤ x ≤ 0.065) ceramics were of orthorhombic phase at room temperature. Piezoelectric activities and domain patterns were investigated and compared with those of BaTiO3 ceramic. All the Ba(ZrxTi1?x)O3 ceramics showed nearly the same d33 values of about 265 pC/N and the same domain width of about 220 nm. By comparing the grain sizes and domain width of the Ba(ZrxTi1?x)O3 ceramics with those of BaTiO3 ceramic, it is speculated that the variation of domain width with grain sizes in orthorhombic Ba(ZrxTi1?x)O3 ceramics may be different with that in tetragonal BaTiO3 ceramic. Besides domain width, the effective inertia mass of domain wall is also considered to be a very important factor that impacts the piezoelectric activities of the Ba(ZrxTi1?x)O3 ceramics.  相似文献   

19.
Recently, a number of semiconductor devices have been widely researched in order to make breakthroughs from the short-channel effects (SCEs) and high standby power dissipation of the conventional metal-oxide-semiconductor field-effect transistors (MOSFETs). In this paper, a design optimization for the silicon nanowire tunneling field-effect transistor (SNW TFET) based on PNPN multi-junction structure and its radio frequency (RF) performances are presented by using technology computer-aided design (TCAD) simulations. The design optimization was carried out in terms of primary direct-current (DC) parameters such as on-current (Ion), off-current (Ioff), current ratio (Ion/Ioff), and subthreshold swing (SS). Based on the parameters from optimized DC characteristics, basic radio frequency (RF) performances such as cut-off frequency (fT) and maximum oscillation frequency (fmax) were analyzed. The simulated device had a channel length of 60 nm and a SNW radius of 10 nm. The design variable was width of the n-doped layer. For an optimally designed PNPN SNW TFET, SS of 34 mV/dec and Ion of 35 μA/μm were obtained. For this device, fT and fmax were 80 GHz and 800 GHz, respectively.  相似文献   

20.
One of the porphyrin derivatives, meso-tetraphenylporphyrin (TPP), has been synthesized and examined as an emitter material (EM) for efficient fluorescent red organic light-emitting diodes (OLEDs). By inserting a tungsten oxide (WO3) layer into the interface of anode (ITO) and hole transport layer N,N′-Di-[(1-napthyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine (NPB) and by using fullerene (C60) in contact with a LiF/Al cathode, the performance of devices was markedly improved. The current density–voltage–luminance (JVL) characterizations of the samples show that red OLEDs with both WO3 and C60 as buffer layers have a lower driving voltage and higher luminance compared with the devices without buffer layers. The red OLED with the configuration ITO/WO3 (3 nm)/NPB (50 nm)/TPP (60 nm)/BPhen (30 nm)/C60 (5 nm)/LiF (0.8 nm)/Al (100 nm) achieved the high luminance of 6359 cd/m2 at the low driving voltage of 8 V. At a current density of 20 mA/cm2, a pure red emission with CIE coordinates of (0.65; 0.35) is observed for this device. Moreover, a power efficiency of 2.07 lm/W and a current efficiency of 5.17 cd/A at 20 mA/cm2 were obtained for the fabricated devices. The study of the energy level diagram of the devices revealed that the improvement in performance of the devices with buffer layers could be attributed to lowering of carrier-injecting barrier and more balanced charge injection and transport properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号