首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
自旋交叉配合现象与分子电子器件   总被引:2,自引:0,他引:2  
陈友存  刘光祥 《化学通报》2002,65(8):539-543
自旋交叉配合物在热、压力或光诱导自旋交叉现象的同时会伴随着其它一些协同效应,比如配合物颜色的改革、存在着大的热滞后效应等,这些协同效应是单个分子或分子集合体作为热开关、光开关和信息存储元件材料的基础。因此,自旋交叉配合物是开发新型的热开关、光开关和信息存储元件材料的理想分子体系。本文概述了自旋交叉现象的研究历史、现状和未来的发展趋势。讨论了影响配合物自旋交叉性质的各种内在的和外部的因素,总结了目前用于研究自旋交叉现象的各种现代测试技术。最后,展望了自旋交叉配合物在分子电子器件方面的应用前景。  相似文献   

2.
《Comptes Rendus Chimie》2018,21(12):1095-1120
The piezochromic properties of spin-crossover complexes have been recognized for a long time, with increasing pressure favouring the low spin state due to its smaller volume and therefore shifting the spin equilibrium towards higher temperatures and accelerating the relaxation at a given temperature. However, the interpretation and quantification of pressure-induced changes have been several times compromised by the relatively poor and incomplete spectral and structural information provided by the detection methods or due to the experimental difficulties related to the need for hydrostatic conditions at low temperatures. The present review is therefore primarily focused on these experimental aspects of high-pressure spin crossover research providing an overview of methods of pressure generation and associated detection methods as well as on selected recent results.  相似文献   

3.
《Comptes Rendus Chimie》2018,21(12):1270-1286
Spin crossover compounds are multifunctional switching materials that change their spin state and many other physical properties, such as colour, magnetic susceptibility, electric conductivity, dielectric constant and mechanical properties, upon external stimuli. Spin crossover materials have been proposed for a variety of technological applications that require the elaboration of highly controlled thin films and patterns. Here, we present a brief overview of the most diffused approaches for thin film growth and patterning, showing both conventional and unconventional approaches and the most recent advancement in their applications, highlighting the most promising cases and the most critical problems.  相似文献   

4.
Biomaterials with exceptional biocompatibility and bioactivity are now pushing the boundaries of bone tissue engineering. In this study, natural Arabic gum biopolymer incorporating titanium dioxide nanoparticles (NAG + TiO2NP) nanocomposite film was fabricated. The FTIR and XRD analysis show the presence of functional groups assigned to NAG biopolymers and highly crystalline anatase TiO2NP. Well dispersed TiO2NP can be seen from SEM micrograph suggesting good interaction between TiO2NP filler and NAG biopolymer matrix to enhance the mechanical characteristics of nanocomposite film. The NAG + TiO2NP nanocomposite film exhibited strong bioactivity to form bone-like apatite and promoted the proliferation of MG-63 cells attributed to their excellent biocompatibility and non-toxicity. The NAG + TiO2NP nanocomposite film also displays high antibacterial activity with (36.33 ± 1.53) mm and (27.00 ± 2.00) mm inhibition zone were recorded against Staphylococcus aureus and Escherichia coli. The findings indicate that the NAG + TiO2NP nanocomposite film, with its improved mechanical properties, high swelling capacity, biodegradability, and non-toxicity, shows promise as a viable option for bone tissue regeneration materials.  相似文献   

5.
6.
Nanoparticles are expected to be applicable to inhalation as carrier but there exist disadvantages because of their size. Their deposition dose to the lung will be small. To overcome this problem and utilize nanoparticles for inhalation, we have prepared nanocomposite particles as drug carriers targeting lungs. The nanocomposite particles are prepared as drug-loaded nanoparticles–additive complex to reach deep in the lungs and to be decomposed into nanoparticles when they deposit into lung. In this study, we examined the effect of preparation condition – inlet temperature, size of primary nanoparticles and weight ratio of primary nanoparticles – on the property of nanocomposite particles.

When the size of primary nanoparticles was 400 nm and inlet temperature was 90 °C, only the nanocomposite particles containing between 45 and 55% of primary nanoparticles could be decomposed into nanoparticles in water. On the other hand, when the inlet temperature was 80 °C, nanocomposite particles were decomposed into nanoparticles independent of the weight ratio of primary nanoparticles. Also, the aerodynamic diameter of the nanocomposite particles was between 1.5 and 2.5 μm, independent of the weight ratio of primary nanoparticles.

When the size of primary nanoparticles was 200 nm and inlet temperature was 70 °C, nanocomposite particles were decomposed into nanoparticles independent of the weight ratio of primary nanoparticles. Also, the aerodynamic diameters of them were almost 2.0 μm independent of the weight ratio of primary nanoparticles. When the nanocomposite particles containing nanoparticles with the size of 200 nm are prepared at 80 °C, no decomposition into nanoparticles was observed in water.

Fine particle values, FPF, of the nanocomposite particles were not affected by the weight ratio of primary nanoparticles when they were prepared at optimum inlet temperature.  相似文献   


7.
8.
《Comptes Rendus Chimie》2018,21(12):1060-1074
Fundamental aspects of spin crossover (SCO) mechanisms are reviewed through considerations of ligand/crystal field theory, thermodynamics, and modeling of the thermoinduced spin transition in the solid state based on macroscopic–mesoscopic approaches . In particular, we highlight success of thermodynamic models in the simulation of first-order spin transitions with hysteretic behaviors (bistability) and multistep conversions. Bistability properties originate from elastic interactions, the so-called cooperativity between SCO molecules in the crystal packing. Although physical and chemical properties and thermodynamical quantities of noninteracting SCO compounds can be readily injected in macroscopic models, taking cooperativity into account remains problematic. The relationship between phenomenological numerical parameters and experimentally accessible quantities can only be most of the time indirectly established. Recent extensions of these thermodynamical models to grasp SCO properties at the nanoscale and combinations with ab initio numerical methods show that macroscopic models still constitute useful theoretical tools to investigate SCO phenomena. The necessity to further probe the thermomechanical properties of SCO materials is also emphasized.  相似文献   

9.
10.
Synthesis of pure Zinc oxide (ZnO), Copper oxide (CuO) nanoparticles (NPs) and their (ZnO/CuO) nanocomposites (NCs) in 1:1 M ratio were successfully prepared by co-precipitation method. The structural properties of the as synthesized nanoparticles and nanocomposite materials were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Optical band-gap studies were done using UV–Visible absorption spectroscopy. Photovoltaic properties of pure ZnO NPs, CuO NPs and ZnO/CuO NCs coated over a single-crystalline silicon solar cell were carried out to compare improvement of light-conversion efficiency in coated solar cell. The maximum light conversion efficiencies were found to be of 8.02% for CuO (3 mg/ml concentration) and 7.28% for ZnO NPs (3 mg/ml concentration), whereas that of mixed metal nanocomposite CuO/ZnO NCs was found to be 7.62%. at very low concentration of 1 mg/ml. This indicates with low concentration of mixed metal NCs an improvement in light efficiency can be obtained. The enhancement in efficiency could be due to formation of p - n heterojunction by CuO/ZnO NCs composites which enhances the number of electrons and holes participating in conduction on the surface.  相似文献   

11.
A facile method was developed to load a large amount of silver nanoparticles into a biodegradable and biocompatible cellulose acetate (CA) nanofibrillar aerogel in a controlled manner. The micro-sized CA fibrils were separated into nano-sized fibrils by salt-assisted chemical treatment in a water-acetone co-solvent to give a nanofibrillar structure with a diameter of 20-50 nm, BET surface area of 110 m2/g, and porosity of 96%. Using the high electron-rich oxygen density in the CA macromolecules and the large surface area of the CA nanoporous structure as an effective nanoreactor, the in-situ direct metallization technique was successfully used to synthesize Ag nanoparticles with an average diameter of 2.8 nm and a loading content of up to 6.98 wt%, which can hardly be achieved by previous methods. This novel procedure provides a facile and economic way to manufacture Ag nanoparticles supported on a porous membrane for various biomedical applications.  相似文献   

12.
Toward the realization of a ligand-driven light-induced spin change (LD-LISC) around room temperature, we have investigated the spin-crossover phenomenon in [Fe(stpy)4(X)2] (stpy = styrylpyridine, X = NCS, NCBH3) under high pressure. The spin transition temperature increases from 110 to 220 K with increasing applied pressure up to 0.75 GPa for [Fe(trans-stpy)4(NCS)2], while [Fe(cis-stpy)4(NCS)2] shows the high-spin state in the temperature region between 2 and 300 K even at 0.75 GPa. In the case of X = NCBH3, due to the stronger ligand field of NCBH3, the spin transition temperature increases from 240 to 360 K with increasing applied pressure up to 0.50 GPa for [Fe(trans-stpy)4(NCBH3)2]. In the case of [Fe(cis-stpy)4(NCBH3)2], the spin state is the high-spin state in the temperature region between 2 and 300 K. However, the spin transition appears at 125 K under 0.5 GPa and the transition temperature increases with increasing applied pressure. In this way, we have decided the applied pressure region of 0.65-1.09 GPa where [Fe(stpy)4(NCBH3)2] undergoes LD-LISC at room temperature.  相似文献   

13.
Polyacrylate/silica nanocomposite materials prepared by sol-gel process   总被引:1,自引:0,他引:1  
Polyacrylate/silica nanocomposite was prepared by sol-gel process via in situ emulsion polymerization. The influence of the synthetic conditions, such as the ratio of different monomers and the contents of tetraethoxysilane (TEOS), γ-methacryloxypropyltrimethoxysilane (Z-6030), diethanolamine (DAM) and ammonium persulfate (APS) on the physical mechanical properties of polyacrylate/silica nanocomposite was investigated in details. Dynamics Laser Scattering (DLS) indicated that the average diameter of the polyacrylate/silica latex particles (177 nm) was bigger than that of the pure polyacrylate latex particles (105.3 nm), but the ζ potential of polyacrylate/silica was decreased respectively in contrast to that of the polyacrylate. Differential Scanning Calorimeters (DSC) analysis confirmed that the glass transition temperature of polyacrylate/nano-SiO2 (Tg = −24 °C) was higher than that of polyacrylate (Tg = −36 °C). UV analysis showed that the UV absorbency of polyacrylate/silica was improved evidently in contrast to that of polyacrylate.  相似文献   

14.
To overcome the disadvantages both of microparticles and nanoparticles for inhalation, we have prepared nanocomposite particles as drug carriers targeting lungs. The nanocomposite particles having sizes about 2.5 μm composed of sugar and drug-loaded PLGA nanoparticles can reach deep in the lungs, and they are decomposed into drug-loaded PLGA nanoparticles in the alveoli. Sugar was used as a binder of PLGA nanoparticles to be nanocomposite particles and is soluble in alveolar lining fluid. The primary nanoparticles containing bioactive materials were prepared by using a probe sonicator. And then they were spray dried with carrier materials, such as trehalose and lactose. The effects of inlet temperature of spray dryer were studied between 60 and 120 °C and the kind of sugars upon properties of nanocomposite particles. When the inlet temperatures were 80 and 90 °C, nanocomposite particles with average diameters of about 2.5 μm are obtained and they are decomposed into primary nanoparticles in water, in both sugars are used as a binder. But, those prepared above 100 °C are not decomposed into nanoparticles in water, while the average diameter was almost 2.5 μm. On the other hand, nanocomposite particles prepared at lower inlet temperatures have larger sizes but better redispersion efficiency in water. By the measurements of aerodynamic diameters of the nanocomposite particles prepared with trehalose at 70, 80, and 90 °C, it was shown that the particles prepared at 80 °C have the highest fine particle fraction (FPF) value and the particles are suitable for pulmonary delivery of bioactive materials deep in the lungs. Meanwhile the case with lactose, the particles prepared at 90 °C have near the best FPF value but they have many particles larger than 11 μm.  相似文献   

15.
Nanoparticles have widely been studied in drug delivery research for targeting and controlled release. The aim of this article is application of nanoparticles as an inhalable agent for treatment of lung cancer. To deposit effectively deep the particles in the lungs, the PLGA nanoparticles loaded with the anticancer drug 6-{[2-(dimethylamino)ethyl]amino}-3-hydroxyl-7H-indeno[2,1-c]quinolin-7-one dihydrochloride (TAS-103) were prepared in the form of nanocomposite particles. The nanocomposite particles consist of the complex of drug-loaded nanoparticles and excipients. In this study, the anticancer effects of the nanocomposite particles against the lung cancer cell line A549. Also, the concentration of TAS-103 in blood and lungs were determined after administration of the nanocomposite particles by inhalation to rats.TAS-103-loaded PLGA nanoparticles were prepared with 5% and 10% of loading ratio by spray drying method with trehalose as an excipient. The 5% drug-loaded nanocomposite particles were more suitable for inhalable agent because of the sustained release of TAS-103 and higher FPF value. Cytotoxicity of nanocomposite particles against A549 cells was higher than that of free drug.When the nanocomposite particles were administered in rats by inhalation, drug concentration in lung was much higher than that in plasma. Furthermore, drug concentration in lungs administered by inhalation of nanocomposite particles was much higher than that after intravenous administration of free drug.From these results, the nanocomposite particle systems could be promising for treatment of lung cancer.  相似文献   

16.
Copper–fluoropolymer (Cu-CFx) nano-composite films are deposited by dual ion-beam sputtering. The extensive analytical characterization of these layers reveals that inorganic nanoparticles composed of Cu(II) species are evenly dispersed in a branched fluoropolymer matrix. In particular, X-ray photoelectron spectroscopy has been employed to study the surface chemical composition of the material and to assess how it changes on increasing the copper loading in the composite. Transmission electron microscopy reveals that the copper nanoclusters have a mean diameter of 2–3 nm and are homogeneously in-plane distributed in the composite films. Electrothermal atomic absorption spectroscopy has been used to study the kinetics of copper release in the solutions employed for the biological tests. The Cu-CFx layers are employed as bioactive coatings capable of inhibiting the growth of target microorganisms such as Saccharomyces cerevisiae, Escherichia coli, Staphylococcus aureus, and Lysteria. The results of the analytical characterization enable a strict correlation to be established among the chemical composition of the material surface, the concentration of copper dissolved in the microorganisms broths, and the bioactivity of the nano-structured layer.  相似文献   

17.
Thermal investigations on two selected model-nanocomposites have been made. They differ with regard to the type of the anorganic nanoparticles that have been filled into an organic oligomer matrix. The properties of nanocomposites may vary between those of a simple mixture of independent components and those of a system, where specific interfacial interactions between the constituting parts lead to ‘new’ properties. Depending on the type of the nanoparticles filled into the matrix, the resulting properties might be closer to one or to the other extreme. We used temperature modulated differential scanning calorimetry (TMDSC) to investigate a matrix of the oligomer diglycidyl ether of bisphenol A (DGEBA) filled either with SiO2- or Al2O3-nanoparticles. The dependence of the complex specific heat capacity () on the concentration of nanoparticles shows a clear difference between the two systems as far as the glass transition of the oligomer is concerned. The SiO2 composite seems to behave more like a simple mixture, whereas the Al2O3 composite shows ‘new’ properties.  相似文献   

18.
19.
Three fully amorphous comb-branch polymers based on poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether of different molecular weights as side chains were synthesized. SiO2 nanoparticles of various contents and the salt LiCF3SO3 were added to these comb-branch polymers to obtain nanocomposite polymer electrolytes. The thermal and transport properties of the samples have been characterized. The maximum conductivity of 2.8×10–4 S cm–1 is obtained at 28 °C. In the system the longer side chain of the comb-branch polymer electrolyte increases in ionic conductivity after the addition of nanoparticles. To account for the role of the ceramic fillers in the nanocomposite polymer electrolyte, a model based on a fully amorphous comb-branch polymer matrix in enhancing transport properties of Li+ ions is proposed.  相似文献   

20.
Polymer-stabilized magnetic nanoparticles were obtained using two biocompatible polyelectrolytes: N-carboxyethylchitosan (CECh) and poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The size of the particles (mean diameter 10 or 30 nm, respectively) and the stability of the dispersions could be effectively controlled depending on the polyelectrolyte nature. The presence of polyelectrolyte shell was proved by transmission electron microscopy (TEM) studies and confirmed by thermogravimetric analyses. Depending on the polyelectrolyte nature the magnetic nanoparticles existed in different magnetic states - superparamagnetic or intermediate state between superparamagnetic and ferrimagnetic one, as evidenced by the measurements of the magnetization and Mössbauer analyses. Fabrication of nanocomposite magnetic fibers with mean diameter in the range 100-500 nm was achieved using electrospinning of the system CECh/ferrofluid/non-ionogenic polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号