首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic characteristics of a piezoelectric energy harvesting system including a piezoelectric energy harvester, a bridge rectifier, and a storage capacitor. To accomplish this, this energy harvesting system is modeled, and the charging process of the storage capacitor is investigated by employing the in-phase assumption The results indicate that the charging voltage across the storage capacitor and the gathered power increase gradually as the charging process proceeds, whereas the charging rate slows down over time as the charging voltage approaches to the peak value of the piezoelectric voltage across the piezoelectric materials. In addition, due to the added electrical damping and the change of the system natural frequency when the charging process is initiated, a sudden drop in the vibration amplitude is observed, which in turn affects the charging rate. However, the vibration amplitude begins to increase as the charging process continues, which is caused by the decrease in the electrical damping (i.e., the decrease in the energy removed from the mechanical vibration). This electromechanical coupling characteristic is also revealed by the variation of the vibration amplitude with the charging voltage.  相似文献   

2.
《Journal of sound and vibration》2004,269(3-5):991-1001
Systems that harvest or scavenge energy from their environments are of considerable interest for use in remote power supplies. A class of such systems exploits the motion or deformation associated with vibration, converting the mechanical energy to electrical, and storing it for later use; some of these systems use piezoelectric materials for the direct conversion of strain energy to electrical energy. The removal of mechanical energy from a vibrating structure necessarily results in damping. This research addresses the damping associated with a piezoelectric energy harvesting system that consists of a full-bridge rectifier, a filter capacitor, a switching DC–DC step-down converter, and a battery. Under conditions of harmonic forcing, the effective modal loss factor depends on: (1) the electromechanical coupling coefficient of the piezoelectric system; and (2) the ratio of the rectifier output voltage during operation to its maximum open-circuit value. When the DC–DC converter is maximizing power flow to the battery, this voltage ratio is very nearly 1/2, and the loss factor depends only on the coupling coefficient. Experiments on a base-driven piezoelectric cantilever, having a system coupling coefficient of 26%, yielded an effective loss factor for the fundamental vibration mode of 2.2%, in excellent agreement with theory.  相似文献   

3.
In this article, a comprehensive nonlinear analysis for a piezoelectric laminated micro system around its static deflection is presented. This static deflection is created by an electrostatic DC control voltage through an electrode plate. The micro system beam is assumed as an elastic Euler-Bernoulli beam with clamped-free end conditions. The dynamic equations of this model have been derived by using the Hamilton method and considering the nonlinear inertia, curvature, piezoelectric and electrostatic terms. The static and dynamic solutions have been achieved by using the Galerkin method and the multiple-scales perturbation approach, respectively. The results are compared with numerical and other existing experimental results. By studying the primary resonance excitation, the effects of different parameters such as geometry, material and excitations voltage on the system?s softening and hardening behaviors are evaluated. In a piezoelectrically actuated micro system it was showed that because of existence of curvature and inertia nonlinear terms a small change in excitation amplitude can lead to the formation and expansion of nonlinear response. In this paper, it is demonstrated that by applying an electrostatic DC control voltage, these nonlinearities can be controlled and altered to a linear domain. This model can be used to design a nano or micro-scale smart device.  相似文献   

4.
A method is presented to determine the response of a spherical acoustic transducer that consists of a fluid-filled piezoelectric sphere with an elastic coating embedded in infinite fluid to electrical and plane-wave acoustic excitations. The exact spherically symmetric, linear, differential, governing equations are used for the interior and exterior fluids, and elastic and piezoelectric materials. Under acoustic excitation and open circuit boundary condition, the equation governing the piezoelectric sphere is homogeneous and the solution is expressed in terms of Bessel functions. Under electrical excitation, the equation governing the piezoelectric sphere is inhomogeneous and the complementary solution is expressed in terms of Bessel functions and the particular integral is expressed in terms of a power series. Numerical results are presented to illustrate the effect of dimensions of the piezoelectric sphere, fluid loading, elastic coating and internal material losses on the open-circuit receiving sensitivity and transmitting voltage response of the transducer.  相似文献   

5.
Ultrasonic NDT applications are frequently based on the spike excitation of piezoelectric transducers by means of efficient pulsers which usually include a power switching device (e.g. SCR or MOS-FET) and some rectifier components. In this paper we present an approximate frequency domain electro-acoustic model for pulsed piezoelectric ultrasonic transmitters which, by integrating partial models of the different stages (driving electronics, tuning/matching networks and broadband piezoelectric transducer), allows the computation of the emission transfer function and output force temporal waveform. An approximate frequency domain model is used for the evaluation of the electrical driving pulse from the spike generator. Tuning circuits, interconnecting cable and mechanical impedance matching layers are modeled by means of transmission lines and the classical quadripole approach. The KLM model is used for the piezoelectric transducer. In addition, a PSPICE scheme is used for an alternative simulation of the broadband driving spike, including the accurate evaluation of non-linear driving effects. Several examples illustrate the capabilities of the specifically developed software.  相似文献   

6.
The effect of the optical excitation signal intensity on the impulse response of a photodetector based on a set of metal-semiconductor-metal (MSM) rectifier contacts is studied. The response of the detector is better at a low optical excitation signal. When the energy of an optical excitation pulse is high, the response can be improved by increasing the bias voltage. The advantages of a GaN-based MSM diode in detecting high- energy radiation pulses are established. It is shown that the speed of the GaN-based MSM detector may reach 25 ps for a 60-pJ optical excitation pulse at a wavelength of 290 nm.  相似文献   

7.
灯丝电源是中性束注入器等离子体发生器电源系统的重要组成部分,为了满足其低电压大电流输出特性要求,提出了带平衡电抗器双反星形整流电路的拓扑结构的电源设计方案。该拓扑结构与三相桥式整流电路相比较在采用相同器件下可达到更高功率,减少交流侧输入电流谐波并提高功率因素。分析了该拓扑结构下整流输出特性和所含的谐波分量,根据设计指标计算了整流变压器和平衡电抗器的相关参数,最后通过仿真和实验结果验证了这一拓扑结构的可行性。  相似文献   

8.
王颖  李婷  曹菲  邵雷  陈宇贤 《中国物理 B》2012,(12):544-549
<正>A junction barrier Schottky(JBS) rectifier with an improved P-well on 4H-SiC is proposed to improve the VF-IR trade-off and the breakdown voltage.The reverse current density of the proposed JBS rectifier at 300 K and 800 V is about 3.3×10-8 times that of the common JBS rectifier at no expense of the forward voltage drop.This is because the depletion layer thickness in the P-well region at the same reverse voltage is larger than in the P+ grid,resulting in a lower spreading current and tunneling current.As a result,the breakdown voltage of the proposed JBS rectifier is over 1.6 kV,that is about 0.8 times more than that of the common JBS rectifier due to the uniform electric field.Although the series resistance of the proposed JBS rectifier is a little larger than that of the common JBS rectifier,the figure of merit(FOM) of the proposed JBS rectifier is about 2.9 times that of the common JBS rectifier.Based on simulating the values of susceptibility of the two JBS rectifiers to electrostatic discharge(ESD) in the human body model(HBM) circuits,the failure energy of the proposed JBS rectifier increases 17%compared with that of the common JBS rectifier.  相似文献   

9.
Acoustic transducers made from piezoelectric ceramic cylinders usually exploit the breathing or omnidirectional (omni) mode of vibration. However, with suitable voltage distribution, higher order extensional modes of the cylinder can be excited which produce directional radiation patterns. These modal radiation patterns can then be combined to synthesize desired beam patterns which may be steered by incrementing the excitation. This paper describes a model for the combined acoustic response of the extensional modes of vibration of a piezoelectric ceramic cylinder, a method of synthesizing a desired radiation pattern, and an experimental implementation of a directional transducer that uses these techniques. This tri-modal transducer is broadband and directional with a frequency independent beam pattern yet simple, small, and lightweight.  相似文献   

10.
王晨青  马建敏 《应用声学》2023,42(6):1139-1147
在Guyomar非线性模型基础上,通过机电等效法将晶堆前向负载作为等效质量和阻尼加入振动方程的质量项和阻尼项,推导了换能器振速、辐射声压级和谐振频率偏移率等表达式,计算分析了压电陶瓷非线性参数和结构参数对换能器声辐射性能的影响,研究了压电陶瓷的非线性对换能器结构参数匹配的影响。结果表明,换能器节面靠前,前盖板厚度越小,前盖板大径越小,都可以减少压电陶瓷非线性引起的换能器频率偏移。当设计频率确定时,压电陶瓷处于非线性工作域的换能器的结构参数有所减小。换能器加入辐射端匹配后,可以改善压电晶堆前向负载匹配,降低换能器的谐振频率偏移率。换能器激励电流也会出现频率偏移现象。在提高换能器激励电压时,换能器的结构参数应适当减小。得到的结论可为换能器设计提供理论依据和帮助。  相似文献   

11.
The probability structure of the response and energy harvested from a nonlinear oscillator subjected to white noise excitation is investigated by solution of the corresponding Fokker–Planck (FP) equation. The nonlinear oscillator is the classical double well potential Duffing oscillator corresponding to the first mode vibration of a cantilever beam suspended between permanent magnets and with bonded piezoelectric patches for purposes of energy harvesting. The FP equation of the coupled electromechanical system of equations is derived. The finite element method is used to solve the FP equation giving the joint probability density functions of the response as well as the voltage generated from the piezoelectric patches. The FE method is also applied to the nonlinear inductive energy harvester of Daqaq and the results are compared. The mean square response and voltage are obtained for different white noise intensities. The effects of the system parameters on the mean square voltage are studied. It is observed that the energy harvested can be enhanced by suitable choice of the excitation intensity and the parameters. The results of the FP approach agree very well with Monte Carlo Simulation (MCS) results.  相似文献   

12.
串联型晶体管直流稳压电源在稳压部分的过载保护分限流型和截流型两种保护电路,这两种过载保护电路都有各自的缺点,并且都是加在稳压部分。在实验课教学中采取了另外一种过载保护电路,即在桥式整流与滤波器之间加一个220欧姆的分流电阻,对电路进行过载保护,采用这种分流式过载保护电路原理简单,使用方便。几年来,使用效果甚佳。  相似文献   

13.
蓝春波  秦卫阳  李海涛 《物理学报》2015,64(8):80503-080503
随着压电晶体材料的迅速发展, 基于压电效应的能量采集系统是俘获环境中的宽带随机振动能量的一种有效途径. 研究了有限宽带随机激励作用下, 磁斥力双稳态压电俘能系统的相干共振俘能机理, 并进行了实验验证. 运用Euler-Maruyama方法求解了随机非线性压电振动耦合方程, 比较分析了相干共振发生前后系统的动力学特性和俘能效率, 然后基于Kramers逃逸速率解释了相干共振. 最后的随机振动实验结果验证了双稳态压电俘能系统的相干共振俘能机理. 并且观察到: 当相干共振发生时, 系统会在两个势能阱之间剧烈运动, 此时宽带随机振动能量会被转化为大幅值窄带低频振动响应, 从而极大地提高了宽带随机振动能量的俘获效率.  相似文献   

14.
Active fiber composites (AFC) are thin and conformable transducer elements with orthotropic material properties, since they are made of one layer of piezoelectric ceramic fibers. They are suitable for applications in structural health monitoring systems (SHM) with acoustic non-destructive testing methods (NDT). In the presented work the transfer behavior of an AFC as an emitter of transient elastic waves in plate-like structures is investigated. The wave field emitted by an AFC surface bonded on an isotropic plate was simulated with the finite-difference method. The model includes the piezoelectric element and the plate and allows the simulation of the elastic wave propagation. For comparison with the model experiments using a laser interferometer for non-contact measurements of particle velocities at different points around the AFC on the surface of the plate were performed. Transfer functions defined as the ratio of the electric voltage excitation signal and the resulting surface velocity at a specific point are separately determined for the two fundamental Lamb wave modes. In order to take the orthotropic behavior of the AFC into account the transfer functions are determined for several points around the AFC. Results show that the AFC is capable to excite the fundamental symmetric and antisymmetric Lamb wave mode. The antisymmetric mode is mainly radiated in the direction of the piezoelectric fibers, while the symmetric mode is spread over a larger angle. The amplitudes of the emitted waves depend on the frequency of the excitation as well as on the geometric dimensions of the transducer.  相似文献   

15.
Snap-through mechanism is employed to harvest electricity from random vibration through piezoelectricity. The random excitation is assumed to be Gaussian white noise. The snap-through piezoelectric energy harvester possesses the bistability. For small-amplitude vibration in a potential well, the Ito stochastic differential equation of the electromechanical coupling system is derived from the Taylor approximation at a stable equilibrium point. The method of the moment differential equations is applied to determine the statistical moments of the displacement response and the output voltage. The effects of the system parameters on the output voltage and the output power are examined. The approximate analytical outcomes are qualitatively and quantitatively supported by the numerical simulations. For large-amplitude interwell motion, the effects of the parameters on the output voltage and the output power are numerically investigated. Nonlinearity produced by the snap-through improves energy harvesting so that the snap-through piezoelectric energy harvester can outperform the linear energy harvester in the similar size under Gaussian white noise excitations.  相似文献   

16.
An alternate approach to exciting a one-dimensional structure with discontinuities using a piezoelectric actuator is presented and examined. Instead of being bonded to the uniform side of a beam, the piezoelectric actuator is attached such that it spans two adjacent rib discontinuities. In this configuration, the actuator generates an eccentric actuation force on the structure and induces both axial and transverse motions. The goal of this work is to first model the axial and transverse response caused by the piezoelectric actuator. Then, the change in that response is examined for the case where an external disturbance force is present. The system is modeled by coupling the piezoelectric strain and structural dynamic response. The characteristics of the voltage-generated piezoelectric forces are discussed through numerical examples. The structural response found using the dynamic force–voltage model for the actuator is then compared to the response when the actuator model is approximated by its static or zero-frequency value. Furthermore, the ability of the actuator to potentially provide better control authority by using this alternate configuration is examined. The numerical study shows that when the actuator spans two discontinuities, there is potential for greater control authority than when that same actuator is placed on the uniform side of the structure.  相似文献   

17.
Nonlinear dynamics has become one of the key aspect to improve the efficiency of kinetic energy harvesters working in the real environment. Different methods based on the exploitation of the dynamical features of stochastic nonlinear oscillators using bi-stable piezoelectric cantilevers or buckled beams have been proposed in the past years. Such methods are shown to outperform standard linear oscillators and to overcome some of the most severe limitations of present approaches once applied to ambient vibrations. This work presents simulation results comparing the two methods. The same piezoelectric element subjected to a fixed vibrating body in a cantilever or bridge configuration has been simulated. The kinetic excitation considered is a zero mean exponentially correlated gaussian noise with different amplitudes. The piezoelectric oscillator output response has been obtained as a function of a nonlinear parameter. This work is intended to help designing the most performing energy harvester for real world applications starting from the same piezoelectric element.  相似文献   

18.
本文基于电压型超导电磁储能系统(Superconducting Magnet Energy Storage,简称SMES)的基本结构和工作原理,结合脉冲宽度调制(Pulse Width Modulation,简称PWM)整流器的应用,建立了三相电压型PWM整流器控制的超导电磁储能系统的数学模型.设计了具有前馈解耦控制的PWM整流器双闭环控制系统,并运用Mat-lab/Simulink仿真分析软件对基于PWM整流器的超导电磁储能双闭环控制系统进行了仿真研究.仿真结果表明PWM整流器双闭环控制策略应用于SMES电压型SMES功率控制器比直接电流控制等传统的控制策略反应速度更快,向电网注入谐波电流更小,有利于提高了电网的稳定性.  相似文献   

19.
Smooth regulation of output voltage of piezoelectric transformers can significantly widen the application range of piezoelectric transformers. So far the driving frequency of piezoelectric transformers has been used to regulate the output voltage at a matching load. However, the regulation range of voltage gain achieved by the method is usually very narrow within the acceptable range of efficiency. In this work, we investigate the possibility to regulate the output voltage of a k15 mode piezoelectric transformer by an external L/C component. The effects of an L/C component in series or parallel with the input and output ports on the voltage gain are investigated theoretically and experimentally. It is found that the voltage gain can be smoothly regulated in a relatively wide range by a tunable inductor that is in series with the input port. At a matching load of 80 Ω, the voltage gain can be regulated between 0.31 and 0.94 with efficiency larger than 90% and between 0.34 and 1.18 with efficiency about 80%. It is also found that a tunable capacitor in parallel or series with the output port can be used to regulate the voltage gain with efficiency higher than 90%.  相似文献   

20.
Based on the energy method,the underwater resonance frequency equation and electrical admittance curve of the slotted piezoelectric ring are derived.By establishing the equivalent circuit of slotted piezoelectric ring in low-frequency receiving condition,the lowfrequency open circuit voltage sensitivity of slotted piezoelectric ring is deduced.Compared the low-frequency receiving sensitivity of the slotted piezoelectric ring and the complete ring,the thought to design the deep ocean hydrophone is presented,which combines the slotted piezoelectric ring and the free flooded structure.By establishing finite element simulation model of free flooded slotted piezoelectric ring,the relationship between ring structure parameters and low-frequency open circuit voltage sensitivity are discussed.Through the simulation and optimization,the deep-sea slotted piezoelectric ring hydrophone with the resonance frequency of 600 Hz is fabricated.The acoustic and pressure tests results indicated that the low-frequency open circuit voltage sensitivity of free flooded slotted piezoelectric ring hydrophone in work bandwidth 100-300 Hz is-193.2 dB and the least value is-197.9 dB with the-4.7 dB fluctuation.Hydrostatic pressure resistance of 30 Mpa is obtained.Compared with the same structure size free flooded piezoelectric ring hydrophone,the low-frequency open circuit voltage sensitivity of slotted piezoelectric ring hydrophone raised 20 dB.The results verify the practicability of deep ocean hydrophone presented here with free flooded slotted piezoelectric ring structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号