首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mixture of crystalline Co3O4/CoO nanorods with non-uniform dense distribution has been successfully synthesized by microwave hydrothermal technique. The synthesized nanorods have been characterized by several techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transforms infrared spectroscopy (FT-IR). The results showed that the as synthesized specimens contained mixed crystalline Co3O4/CoO nanorods with an average length of around 80 nm and an average diameter of 42 nm. UV–Vis spectrum of the nanorods exhibited a strong UV emission. The band energy gap of the product was 1.79 eV which lies between the energy gap of CoO and that for Co3O4. The obtained carrier concentration is of the order 4.32 × 1027 m−3 and the dielectric constant is found to be 4.89. The electrical conductivity increases with increasing temperature and behaves as a semiconducting material with an activation energy of a bout 0.26 eV. This makes the as synthesized mixed Co3O4/CoO nanorods very useful for supercapacitor devices application. Magnetic hysteresis loops at room temperature of the as synthesized mixed oxides (Co3O4/CoO) nanorods exhibit typical soft magnetic behavior.  相似文献   

2.
《Current Applied Physics》2019,19(7):794-803
Cobalt oxide and manganese oxides are promising electrode materials amongst the transition metal oxides (TMOs) for pseudocapacitors. The lack of reversibility and deterioration of capacitance at higher current densities is major flaw in Co3O4 as an electrode for supercapacitor while MnO2 suffers from low electrical conductivity and poor cycling stability. It is inevitable to bridge the performance gap between these two TMOs to obtain a high performance supercapacitor based on environmental benign and earth abundant materials. Herein, we fabricated a hybrid triple heterostructure high-performing supercapacitor based on hexagonal sheets of Co3O4, MnO2 nanowires and graphene oxide (GO) to form a composite structure of Co3O4/MnO2/GO by all hydrothermal synthesis route. The Co3O4 square sheets serves as an excellent backbone with good mechanical adhesion with the current collector providing a rapid electronic transfer channel while the integrated nanostructure of MnO2 NW/GO permits more electrolyte ions to penetrate capably into the hybrid structure and allows effective utilization of more active surface areas. A triple heterostructured device exhibits a high areal capacitance of 3087 mF cm−2 at 10 mV s−1 scan rate along with the exceptional rate capability and cycling stability having capacitance retention of ∼170% after 5000 charge/discharge cycles. The TMOs based pseudocapacitor with the conducting scaffolds anchoring based on graphene derivatives like this will pave an encouraging alternatives for next generation energy storage devices.  相似文献   

3.
Uniform and adherent cobalt oxide thin films have been deposited on glass substrates from aqueous cobalt chloride solution, using the solution spray pyrolysis technique. Their structural, optical and electrical properties were investigated by means of X-ray diffraction (XRD), scanning electron micrograph (SEM), optical absorption and electrical resistivity measurements. Along with this, to propose Co3O4 for possible application in energy storage devices, its electrochemical supercapacitor properties have been studied in aqueous KOH electrolyte. The structural analysis from XRD pattern showed the oriented growth of Co3O4 of cubic structure. The surface morphological studies from scanning electron micrographs revealed the nanocrystalline grains alongwith some overgrown clusters of cobalt oxide. The optical studies showed direct and indirect band gaps of 2.10 and 1.60 eV, respectively. The electrical resistivity measurement of cobalt oxide films depicted a semiconducting behavior with the room temperature electrical resistivity of the order of 1.5 × 103 Ω cm. The supercapacitor properties depicted that spray-deposited Co3O4 film is capable of exhibiting specific capacitance of 74 F/g.  相似文献   

4.
A template‐free hydrothermal method is developed to prepare hierarchical hollow precursors. An inside‐out Ostwald ripening mechanism is proposed to explain the formation of the hollow structure. After the calcination in the air, hierarchically meso/macroporous NaCoPO4–Co3O4 hollow microspheres can easily be obtained. When being evaluated as electrode materials for a supercapacitor, the hierarchically porous NaCoPO4–Co3O4 hollow microspheres electrode shows a specific capacitance of 268 F g?1 at 0.8 A g?1 and offers a good cycle life. More importantly, the obtained materials are successfully applied to fabricate flexible solid‐state asymmetric supercapacitors. The device exhibits a specific capacitance of 28.6 mF cm?2 at 0.1 mA cm?2, a good cycling stability with only 5.5% loss of capacitance after 5000 cycles, and good mechanical flexibility under different bending angles, which confirms that the hierarchically porous NaCoPO4–Co3O4 hollow microspheres are promising active materials for the flexible supercapacitor.  相似文献   

5.
The development of smart structured cathode materials for supercapacitors (SCs) has sparked tremendous interest. However, the appropriate design to achieve high capacitance and energy density-based cathode materials remains a major problem for energy storage systems. This article describes the effective synthesis of self-supported 3D micro-flowers composed of ultrathin nanowires array of Co3O4 on Ni foam (NF) using hydrothermal conditions (Co3O4@NF). The mesoporous Co3O4@NF with a high surface area, providing a rich active state for the Faraday redox reaction and increasing the diffusion rate of the electrolyte ions. The optimized Co3O4@NF-16h electrode exhibited supreme electrochemical performance by delivering a high specific capacitance of 1878, (1127) and 1200 (720 C g−1) F g−1 at 1.0 and 20 A g−1, respectively. The Co3O4@NF electrode retained good capacitance stability of 91% over 10000 cycles at 20 A g−1 with excellent rate-performance of 67% at 20 folded high current values. The obtained results for the Co3O4@NF electrode are presented the enhanced pseudocapacitive performance, indicating the substantial potential for high-performance supercapacitor applications.  相似文献   

6.
The fabrication of high performance supercapacitor electrodes has been greatly investigated for future high power storage applications. In this present work, chromium oxide-cobalt oxide based nanocomposite (Cr2O3–Co3O4 NC) was synthesized using the hydrothermal approach. Moreover, the cyclic voltammetry (CV) study reveals the Cr2O3–Co3O4 NC delivers a high specific capacitance of 619.4 F/g at 10 mV/s. The electrochemical impedance spectra (EIS) of Cr2O3–Co3O4 NC possess the solution resistance (Rs) and charge transfer resistance (Rct) of 0.68 Ω and 0.03 Ω respectively. The Galvanostatic charge-discharge (GCD) analysis demonstrated the prolonged charge-discharge time and good rate capability of the Cr2O3–Co3O4 NC. The cyclic stability of Cr2O3–Co3O4 NC delivers superior capacitive retention of 83% even after 2000 cycles. The asymmetric supercapacitor (ASC) device based on Cr2O3–Co3O4//AC yielded an energy density of 4.3 Wh/kg at the corresponding power density of 200 W/kg. Furthermore, the ASC delivers superior cyclic stability of 74.8% even after 1000 consecutive charge-discharge cycles.  相似文献   

7.
Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc–cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge–discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g?1 at a current density of 1.0 A g?1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.  相似文献   

8.
Three kinds of Co3O4 nanomaterials with different morphologies were synthesized controllably by a post-anneal-assisted hydrothermal method in this study. X-ray diffraction and scanning electron microscopy indicated that all three kinds of samples were pure cubic phase of Co3O4 with morphologies of nanorods, nanoclusters, and nanoplates. Moreover, the transmission electron microscopy (TEM) and high-resolution TEM showed that the Co3O4 nanorods were bamboo-like and highly crystalline structures. When these materials were applied to the lithium-ion batteries (LIBs) as anode materials, the Co3O4 of nanorods demonstrated the best performance. It has a stable reversible capacity of 954 mAh g?1 as the anode of a LIB, much higher than the other two kinds of Co3O4 of rod-like nanoclusters and nanoplates, even after 35 cycles. All results showed that the morphology and microstructure take very important roles in the performance of Co3O4 as the anode materials in LIBs.  相似文献   

9.
In this paper, a composite of reduced graphene oxide decorated by Co3O4 hollow spheres (Co3O4/RGO composite) has been synthesized by a one-pot solvothermal method. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR), Raman spectra and so on. The results demonstrate that the Co3O4 hollow spheres with good purity and homogenous size are absorbed onto the reduced graphene oxide sheets as spacers to prevent the aggregation of the graphene oxide sheets. Furthermore, the well electrochemical properties demonstrate that the Co3O4/RGO composite might have potential applications as electrode materials for supercapacitors.  相似文献   

10.
Three-dimensional hierarchical Co3O4@C hollow microspheres (Co3O4@C HSs) are successfully fabricated by a facile and scalable method. The Co3O4@C HSs are composed of numerous Co3O4 nanoparticles uniformly coated by a thin layer of carbon. Due to its stable 3D hierarchical hollow structure and uniform carbon coating, the Co3O4@C HSs exhibit excellent electrochemical performance as an anode material for lithium-ion batteries (LIBs). The Co3O4@C HSs electrode delivers a high reversible specific capacity, excellent cycling stability (1672 mAh g?1 after 100 cycles at 0.2 A g?1 and 842.7 mAh g?1 after 600 cycles at 1 A g?1), and prominent rate performance (580.9 mAh g?1 at 5 A g?1). The excellent electrochemical performance makes this 3D hierarchical Co3O4@C HS a potential candidate for the anode materials of the next-generation LIBs. In addition, this simple synthetic strategy should also be applicable for synthesizing other 3D hierarchical metal oxide/C composites for energy storage and conversion.  相似文献   

11.
A novel approach of double hydroxide-mediated synthesis of nickel cobaltite (NiCo2O4) electro-active material by the hydrothermal method is reported. The obtained NiCo2O4 electro-active material displays the spinel cubic phase and hexagonal-like morphology. Thermogravimetry analysis confirms the thermal stability of the electrode material. The functional groups and phase formation of NiCo2O4 have been confirmed by FT-IR and Raman spectral analysis. The modified NiCo2O4 electrode exhibits the highest specific capacitance of 767.5 F g?1 at a current density of 0.5 A g?1 in 3 M KOH electrolyte and excellent cyclic stability (94 % capacitance retention after 1000 cycles at a high current density of 5 A g?1). The excellent electrochemical performance of the electrode is attributed to the hexagonal-like morphology, which contributes to the rich surface electro-active sites and easy transport pathway for the ions during the electrochemical reaction. The attractive Faradic behavior of NiCo2O4 electrode has been ascribed to the redox contribution of Ni2+/Ni3+ and Co2+/Co3+ metal species in the alkaline medium. The symmetrical two-electrode cell has been fabricated using the NiCo2O4 electro-active material with excellent electrochemical properties for supercapacitor applications.  相似文献   

12.
We describe in this paper the synthesis and the characterization of Li4Ti5O12-reduced graphene oxide (LTO-RGO) composite and demonstrate their use as hybrid supercapacitor, which is consist of an LTO negative electrode and activate carbon (AC) positive electrode. The LTO-RGO composites were synthesized using a simple, one-step process, in which lithium sources and titanium sources were dissolved in a graphene oxide (GO) suspension and then thermal treated in N2. The lithium-ion battery with LTO-RGO composite anode electrode revealed higher discharge capacity (167 mAh g?1 at 0.2 C) and better capacity retention (67%) than the one with pure LTO. Meanwhile, compared with the AC//LTO supercapacitor, the AC//LTO-RGO hybrid supercapacitor exhibits higher energy density and power density. Results show that the LTO-RGO composite is a very promising anode material for hybrid supercapacitor.  相似文献   

13.
Fabricating electrode materials with superior electrochemical performance remains a challenge. Here, a simple but effective strategy for the formation of metal oxide nanomaterials with superior performance has been developed. Silk protein nanofibers adhered on reduced graphene oxide (rGO) sheets are used as templates to regulate the formation of nanostructured iron oxide composites, achieving porous nanorod structures that could not be attained in control experiments. These porous nanorods demonstrate superior electrochemical performance as electrodes with retention of a capacity of 1495 mAh g?1 after 180 cycles at 0.2 C and a rate capability of 900 mAh g?1 at 2 C discharge rate. These new rGO/silk composite templates provide a more controllable environment for Fe2O3 fabrication, resulting in improved nanostructures and superior electrical performance. The strategy developed here should also be more broadly applicable in the design of metal oxide nanomaterials with specialized structures and useful performance.  相似文献   

14.
One-dimensional Co2+-doped Li4Ti5O12 nanofibers with a diameter of approximately 500 nm have been synthesized via a one-step controllable electrospinning method. The Co2+-doped Li4Ti5O12 nanofibers were systematically characterized by XRD, ICP, TEM, SEM, BET, EDS mapping, and XPS. Based on the cubic spinel structure and one-dimensional effect of Li4Ti5O12, Co2+-doped Li4Ti5O12 nanofibers exhibit the enlarged lattice volume, reduced particle size and enhanced electrical conductivity. More importantly, Co2+-doped Li4Ti5O12 nanofibers as a lithium ion battery anode electrode performs superior electrochemical performance than undoped Li4Ti5O12 electrode in terms of electrochemical measurements. Particularly, the reversible capacity of Co2+-doped Li4Ti5O12 electrode reaches up to 140.1 mAh g?1 and still maintains 136.5 mAh g?1 after 200 cycles at a current rate of 5 C. Therefore, one-dimensional Co2+-doped Li4Ti5O12 nanofiber electrodes, showing high reversible capacity and remarkable recycling property, could be a potential candidate as an anode material.  相似文献   

15.
《Solid State Ionics》2006,177(35-36):3187-3191
The electrochemical properties of geometrically well-defined Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) microelectrodes have been investigated by impedance spectroscopy. The microelectrodes of 20–100 μm diameter and 100 nm thickness were prepared by pulsed laser deposition (PLD), photolithography and argon ion beam etching. The oxygen reduction reaction at these model electrodes is limited by interfacial processes, i.e. by the oxygen surface exchange and/or by the transfer of oxide ions across the electrode/electrolyte boundary, whereas the resistance associated with the transport of oxide ions through the bulk of the thin film electrode is negligible. The experiments revealed an extremely low absolute value of the electrochemical surface exchange resistance of only 0.09 (± 0.03) Ω cm2 at 750 °C in air, which is more than a factor of 50 lower than the corresponding value measured for La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF) microelectrodes of the same geometry. The dependence of this and other electrochemical quantities such as the chemical bulk capacitance or the BSCF/YSZ interfacial resistance on temperature has been studied between 500 and 750 °C.  相似文献   

16.
A dandelion-like mesoporous Co3O4 was fabricated and employed as anode materials of lithium ion batteries (LIBs). The architecture and electrochemical performance of dandelion-like mesoporous Co3O4 were investigated through structure characterization and galvanostatic charge/discharge test. The as-prepared dandelion-like mesoporous Co3O4 consisted of well-distributed nanoneedles (about 40 nm in width and about 5 μm in length) with rich micropores. Electrochemical experiments illustrated that the as-prepared dandelion-like mesoporous Co3O4 as anode materials of LIBs exhibited high reversible specific capacity of 1430.0 mA h g?1 and 1013.4 mA h g?1 at the current density of 0.2 A g?1 for the first and 100th cycle, respectively. The outstanding lithium storage properties of the as-prepared dandelion-like mesoporous Co3O4 might be attributed to its dandelion-like mesoporous nanostructure together with an open space between adjacent nanoneedle networks promoting the intercalation/deintercalation of lithium ions and the charge transfer on the electrode. The enhanced capacity as well as its high-rate capability made the as-prepared dandelion-like mesoporous Co3O4 to be a good candidate as a high-performance anode material for LIBs.  相似文献   

17.
Mn1.5Co1.5O4 hierarchical microspheres have been successfully synthesized via a solvothermal method and an annealing procedure. Mn1.5Co1.5O4 exhibits advanced cycling performance, and it retains a reversible capacity of 633 mA h g?1 at a current density of 400 mA g?1 with a coulombic efficiency of 99.0% after 220 cycles. Its remarkable performance is attributed to the hierarchical structure assembled with nanorods, which increases the contact area between each nanorod and electrolyte. More significantly, the open space between neighboring nanorods and the pores on the surface of nanorods can improve Li+ ion diffusion rate. Furthermore, the nanorods have rapid one-dimensional Li+ diffusion channels, which not only possess a large specific surface area for high activity but accommodate the volume change during lithiation–delithiation processes. Therefore, Mn1.5Co1.5O4 hierarchical microspheres can act as a promising alternative anode material for lithium-ion battery.  相似文献   

18.
For the first time, a sonochemical process has been used to synthesis cobalt oxide Co3O4 nanoflowers and nanorods morphology in the presence of the ionic liquid 1-Ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4] as reaction media and morphology template. Different sonication time periods and different molar ratios of the ionic liquid (IL) were used to investigate their effects on the structural, optical, chemical and magnetic properties of the produced Co3O4 nanoparticles. During synthesis process brown powder contains cobalt hydroxide Co(OH)2 and cobalt oxyhydroxide (Cobalt hydroxide oxide) CoO(OH) was formed, after calcination in air for 4 h at 400 °C a black powder of Co3O4 nanoparticles was produced. The produced Co3O4 nanoparticles properties were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), transmission electron microscopy (TEM), FTIR spectroscopy, UV–vis spectroscopy, and Vibrating Sample Magnetometer (VSM). To explain the formation mechanism of Co3O4 NPs some investigations were carried on the brown powder before calcination.  相似文献   

19.
In this work, two different types of Co3O4 nano-crystals were synthesized by (i) conventional direct solid state thermolysis of cobalt terephthalate metal-organic framework (MOF-71) and (ii) new indirect solid state thermolysis of Co(OH)2 derived by alkaline aqueous treatment of MOF-71. The products were then characterized by X-ray diffraction technique (XRD), Fourier transforms infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Reflection electron energy loss spectroscopy (REELS), Brunauer, Emmett, and Teller (BET), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques. By REELS analysis the energy band gap of MOF-71 was determined to be 3.7 eV. Further, electrochemical performance of each Co3O4 nanostructure was studied by the cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) in a three-electrode system in KOH electrolyte. An asymmetric supercapacitor was fabricated using indirect Co3O4 nanoparticles as cathode and electrochemically reduced graphene oxide as anode, and the electrochemical properties were studied and showed a high energy density of 13.51 Wh kg−1 along with a power density of 9775 W kg−1 and good cycling stability with capacitance retention rate of 85% after 2000 cycles.  相似文献   

20.
A manganese cobaltite spinel oxide was synthesized successfully via d-glucose-assisted solvothermal process. The structure and morphology of the sample heat treated at 300 and 400 °C for 6 h has been studied with X-ray diffraction, scanning electron microscope, and transmission electron microscope. Cyclic voltammograms at different scan rate have demonstrated that an excellent capacitance feature of MnCo2O4 spinel oxide electrode. Pseudotype-capacitive behavior of the sample was further corroborated by the charge–discharge measurements at various current densities. The estimated specific capacitance of spinel oxides with two calcination temperature was found to be 189 and 346 F g?1 at a constant current density of 1 A g?1. Observed specific capacitance and excellent cyclic stability of MnCo2O4 spinel oxide has ascribed to their high surface area and mesoporous microstructure. This facilitates to easy electrolyte ion intercalation and deintercalation at electrode/electrolyte interface. In this study, we suggest that the MnCo2O4 spinel nanostructure with high surface area and desired cation distribution could be a promising electrode material for next-generation high-performance supercapacitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号