首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resonant Raman scattering of optical phonons in self-assembled quantum dots   总被引:1,自引:0,他引:1  
We have investigated the carrier relaxation mechanism in InGaAs/GaAs quantum dots by photoluminescence excitation (PLE) spectroscopy. Near-field scanning optical microscope successfully shows that a PLE resonance at a relaxation energy of 36 meV can be seen in all single-dot luminescence spectra, and thus can be attributed to resonant Raman scattering by a GaAs LO phonon to the excitonic ground state. In addition, a number of sharp resonances observed in single-dot PLE spectra can be identified as resonant Raman features due to localized phonons, which are observed in the conventional Raman spectrum. The results reveal the mechanism for the efficient relaxation of carriers observed in self-assembled quantum dots: the carriers can relax within the continuum states, and make transitions to the excitonic ground state by phonon emission.  相似文献   

2.
We have presented a theoretical calculation of the differential cross section for the electron Raman scattering process associated with the interface optical phonon modes in cylindrical GaAs quantum dots (QDs) with a AlAs matrix. We consider the Fröhlich electron–phonon interaction in the framework of the dielectric continuum approach. The selection rules for the processes are studied. Singularities are found to be sensitively size‐dependent, and, by varying the size of the QDs, it is possible to control the frequency shift in the Raman spectra. A discussion of the phonon behavior for QDs with different size is presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
We report on the fabrication and the characterization of quantum dot transistors incorporating a single self-assembled quantum dot. The current–voltage characteristics exhibit clear staircase structures at room temperature. They are attributed to electron tunneling through the quantized energy levels of a single quantum dot.  相似文献   

4.
We report about spatially resolved magneto-optical experiments on a self-assembled InGaAs quantum dot. Using electron beam lithograpy for patterning a metal shadow mask we can isolate a single dot. This allows us to study the optical response of a single dot as a function of excitation power and magnetic field. We investigate the influence of many body interaction in the emission spectra for different exciton occupation numbers of the dot. The diamagnetic/orbital shift as well as Zeeman splitting in a magnetic field can be fully resolved and are used to identify the observed emission lines. Further we report on absorption properties of the quantum dot as a function of magnetic field. We analyse in detail the phonon-assisted absorption process connected with the GaAs LO-phonon 36 meV above the single-exciton ground state.  相似文献   

5.
Pressure-induced binding energies of an exciton and a biexciton are studied taking into account the geometrical confinement effect in a CdTe/ZnTe quantum dot. Coulomb interaction energy is obtained using Hartree potential. The energy eigenvalue and wave functions of exciton and the biexciton are obtained using the self-consistent technique. The effective mass approximation and BenDaniel-Duke boundary conditions are used in the self-consistent calculations. The pressure-induced nonlinear optical absorption coefficients for the heavy hole exciton and the biexciton as a function of incident photon energy for CdTe/ZnTe quantum dot are investigated. The optical gain coefficient with the injection current density, in the presence of various hydrostatic pressure values, is studied in a CdTe/ZnTe spherical quantum dot. The pressure-induced threshold optical pump intensity with the dot radius is investigated. The results show that the pressure-induced electronic and optical properties strongly depend on the spatial confinement effect.  相似文献   

6.
Electron Raman scattering (ERS) is investigated in ZnS/CdSe cylindrical quantum dot quantum well (QDQW). The differential cross section (DCS) is calculated as a function of the scattering frequency and the sizes of QDQW. Single parabolic conduction and valence bands are assumed. Different scattering configurations are discussed and the selection rules for the processes are also studied. Singularities in the spectrum are found and interpreted. The ERS studied here can be used to provide direct information about the electron band structure of these systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
We have carried out a theoretical calculation of the differential cross section for the electron Raman scattering process associated with the surface optical phonon modes in a semiconductor quantum disc.electron states are considered to be confined within a quantum disc with infinite potential barriers.The optical phonon modes we have adopted are the slab phonon modes by taking into consideration the Frohlich interaction between an electron and a phonon.The selection rules for the Raman process are given.Numerical results and a discussion are also presented for various radii and thicknesses of the disc,and different incident radiation energies.  相似文献   

8.
Raman spectra in superlattices composed of layers of self-assembled CdTe quantum dots separated by ZnTe barriers are investigated. As the barrier thickness increases, a high-frequency shift of all peaks is observed, which is explained by a decrease in the lattice constant averaged over the volume of the entire structure. Peaks are found at a CdTe TO mode frequency of 140 cm?1 and also at 120 cm?1. The first peak is assigned to the symmetric Coulomb (interface) mode of the quantum dot material, and the low-frequency peak is assigned to the symmetric mode of the phonons captured in the quantum dot. This combination of modes in structures with quantum dots has not been observed previously.  相似文献   

9.
We have carried out the theoretical calculation of the differential cross section for the electron Raman scattering process associated with a hydrogenic impurity in a disc-shaped quantum dot (QD). We consider the impurity states confined in a disc-shaped QD with parabolic potential in the presence of an external electric field. Effects of the electric field and the confinement strength on the differential cross section are investigated. We make a comparison about the Raman intensity between with and without the Coulomb interaction. We found that the differential cross section of the hydrogenic impurity in a disc-shaped QD dependent strongly on the confinement strength, the external electric field intensity and the Coulomb interaction.  相似文献   

10.
The top interface optical (TIO) and side interface optical (SIO) phonon modes of a cylindrical GaAs/ AlxGa1−xAs quantum dot are derived within the framework of dielectric continuum approximation. Results reveal that, in the case of taking the “two-mode” behavior of the AlxGa1−xAs material into account, there exist eight branches of TIO phonon modes and four branches of SIO phonon modes. The dispersion frequencies of TIO or SIO phonon modes sensitively depend on the Al mole fraction xx in the AlxGa1−xAs material. With increasing wavevector qqκ), the frequency of each TIO (SIO) mode approaches one of the two frequency values of the single AlxGa1−xAs heterostructure.  相似文献   

11.
邢雁  王志平  王旭 《中国物理 B》2009,18(5):1935-1941
The problem of bound polarons in quantum dot quantum well (QDQW) structures is studied theoretically. The eigenfrequencies of bulk longitudinal optical (LO) and surface optical (SO) modes are derived in the framework of the dielectric continuum approximation. The electron--phonon interaction Hamiltonian for QDQW structures is obtained and the exchange interaction between impurity and LO-phonons is discussed. The binding energy and the trapping energy of the bound polaron in CdS/HgS QDQW structures are calculated. The numerical results reveal that there exist three branches of eigenfrequencies of surface optical vibration in the CdS/HgS QDQW structure. It is also shown that the binding energy and the trapping energy increase as the inner radius of the QDQW structure decreases, with the outer radius fixed, and the trapping energy takes a major part of the binding energy when the inner radius is very small.  相似文献   

12.
We report the first resonant electronic Raman spectroscopy study of discrete electronic transitions within small p-doped self-assembled Si/Ge quantum dots (QDs). A heavy hole (hh) to light hole (lh) Raman transition with a dispersionless energy of 105 meV and a resonance energy of the hh states to virtually localised electrons at the direct band gap of 2.5 eV are observed. The hh–lh transition energy shifts to lower values with increasing annealing temperature due to significant intermixing of Si and Ge in the QDs. Structural parameters of the small Si/Ge dots have been determined and introduced into 6-band k·p valence band structure calculations. Both the value of the electronic Raman transition of localised holes as well as the resonance energy at the E0 gap are in excellent agreement with the calculations.  相似文献   

13.
Using the perturbation method and the effective mass approximation, we studied the combined effects of impurity and external electric field on Raman scattering in a spherical quantum dot with a parabolic potential. Based on the computed energies and wave functions, the differential cross-section involved in this process is investigated, and the selection rules are also calculated. Our results suggest that the scattering intensity is strongly affected by the impurity and external electric field considered in this work.  相似文献   

14.
Spectroscopic analyses on stacked Ge quantum dots (QDs) on Si (1 0 0) substrates are presented. Strong and visible photoluminescence around 620 nm from stacked Ge QDs is observed. The luminescence is intense and clearly visible to the naked eye at both room temperature and low temperature. We have investigated the temperature dependence of the luminescence, as well as the composition of Ge dots via transmission electron microscopy and the Raman spectroscopy. Possible causes of the visible luminescence are also speculated in this report.  相似文献   

15.
We report the polarization-dependent energy shift of excitonic emission in a self-assembled InAlAs/AlGaAs quantum dot (QD). The energy shift is well known as Overhauser shift and was observed in a naturally formed GaAs QD using monolayer fluctuation of a quantum well. However, there has been no observation so far in a self-assembled QD, which is suitable for formation of vertically coupled QDs. We demonstrate that the magnitude of the Overhauser shift is enhanced by the photo-injection of the highly polarized electron and is controllable by the polarization of the excitation light in a self-assembled InAlAs QD.  相似文献   

16.
We report the electron resonant Raman scattering (ERRS) process related to the longitudinal optical (LO), interface optical (IO) and quasi-confined (QC) phonons in a cylindrical GaN-AlN quantum well wire (QWW). We present the differential cross-section (DCS) and study the selection rules. Results reveal that the emitted photon frequency decreases with increasing the radius because of the size-selective Raman scattering effect and the built-in electric field. The contribution to the DCS mainly stems from the GaN-type LO (LO1), QC and IO phonons when the wire is thin, but the LO1 and QC phonons are dominant for the thick wire.  相似文献   

17.
<正>The equilibrium composition in strained quantum dot is the result of both elastic relaxation and chemical mixing effects,which have a direct relationship to the optical and electronic properties of the quantum-dot-based device.Using the method of moving asymptotes and finite element tools,an efficient technique has been developed to compute the composition profile by minimising the Gibbs free energy in self-assembled alloy quantum dot.In this paper,the composition of dome-shaped Ge_xSi_(1-x)/Si quantum dot is optimized,and the contribution of the different energy to equilibrium composition is discussed.The effect of composition on the critical size for shape transition of pyramid-shaped GeSi quantum dot is also studied.  相似文献   

18.
江兆潭 《中国物理 B》2010,19(7):77307-077307
This paper investigates Kondo transport properties in a quadruple quantum dot (QD) based on the slave-boson mean field theory and the non-equilibrium Green’s function.In the quadruple QD structure one Kondo-type QD sandwiched between two leads is side coupled to two separate QD structures:a single-QD atom and a double-QD molecule.It shows that the conductance valleys and peaks always appear in pairs and by tuning the energy levels in three side QDs,the one-,two-,or three-valley conductance pattern can be obtained.Furthermore,it finds that whether the valley and the peak can appear is closely dependent on the specific values of the interdot couplings and the energy level difference between the two QDs in the molecule.More interestingly,an extra novel conductance peak can be produced by the coexistence of the two different kinds of side QD structures.  相似文献   

19.
梁德春  安琪  金鹏  李新坤  魏恒  吴巨  王占国 《中国物理 B》2011,20(10):108503-108503
This paper reports the fabrication of J-shaped bent-waveguide superluminescent diodes utilizing an InAlGaAs/AlGaAs quantum dot active region. The emission spectrum of the device is centred at 884 nm with a full width at half maximum of 37 nm and an output power of 18 mW. By incorporating an Al composition into the quantum dot active region, short-wavelength superluminescent diode devices can be obtained. An intersection was found for the light power-injection current curves measured from the straight-waveguide facet and the bent-waveguide facet, respectively. The result is attributed to the conjunct effects of the gain and the additional loss of the bent waveguide. A numerical simulation is performed to verify the qualitative explanation. It is shown that bent waveguide loss is an important factor that affects the output power of J-shaped superluminescent diode devices.  相似文献   

20.
宋鑫  冯昊  刘玉敏  俞重远  尹昊智 《中国物理 B》2014,23(1):16802-016802
By three-dimensional kinetic Monte Carlo simulations, the effects of the temperature, the flux rate, the total coverage and the interruption time on the distribution and the number of self-assembled InAs/GaAs(001) quantum dot(QD) islands are studied, which shows that a higher temperature, a lower flux rate and a longer growth time correspond to a better island distribution. The relations between the number of islands and the temperature and the flux rate are also successfully simulated. It is observed that for the total coverage lower than 0.5 ML, the number of islands decreases with the temperature increasing and other growth parameters fixed and the number of islands increases with the flux rate increasing when the deposition is lower than 0.6 ML and the other parameters are fixed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号