首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Transition metal and rare earth diffusion coefficients at 1323 K in Dy2−yNdy(Fe1−xCox)14B were determined by field emission energy dispersive spectroscopy compositional analysis of diffusion couple specimens. Various arrangements of component materials and temperatures were examined in order to understand the mechanisms affecting diffusion of the components and to predict the stability of functionally graded microstructures consisting of a dysprosium-rich (Dy2−yNdy(Fe1−xCox)14B) outer layer and a neodymium-rich (Nd2(Fe1−xCox)14B) interior. Estimates of the mutual interdiffusion coefficients of Dy, Nd, Fe, and Co in this system were obtained from the preparation of arc melted and annealed polycrystalline specimens, assuming that the diffusion coefficients were independent of concentration (Grube solution). Fifteen diffusion couples were prepared and heat treated at 1323 K for various times in order to provide data for calculation of the diffusion coefficients. The results indicate that the diffusion coefficients of Fe and Co (DFe=3.28×10−10 cm2/s and DCo=7.63×10−10 cm2/s) were significantly higher at 1323 K in this system than those for Dy and Nd (DNd=2.3×10−12 cm2/s and DDy=2.9×10−12 cm2/s).  相似文献   

2.
In this work, we apply first-principles methods to investigate the stability and electronic structure of BC4N nanostructures which were constructed from hexagonal graphite layers where substitutional nitrogen and boron atoms are placed at specific sites. These layers were rolled up to form zigzag and armchair nanotubes, with diameters varying from 7 to 12 Å, or cut and bent to form nanocones, with 60° and 120° disclination angles. The calculation results indicate that the most stable structures are the ones which maximize the number of B–N and C–C bonds. It is found that the zigzag nanotubes are more stable than the armchair ones, where the strain energy decreases with increasing tube diameter D, following a 1/D 2 law. The results show that the 60° disclination nanocones are the most stable ones. Additionally, the calculated electronic properties indicate a semiconducting behavior for all calculated structures, which is intermediate to the typical behaviors found for hexagonal boron nitride and graphene.  相似文献   

3.
The knowledge of the diffusion coefficients of radioactive atoms and ions in air is very important in a number of investigations on and computations of the attachment of radon decay products to aerosol particles. In this work measurements of the diffusion coefficients of neutral and charged212Pb atoms are reported. The values found areD 0=(7.6±0.4)·10?2cm2s?1 for neutral atomsD=(5.0±0.3)·10?2cm2s?1 for charged atoms The used method of measurement allowed to determine these constants 1–5 seconds after the formation aged212Pb atoms, so that a “cluster” formation was improbable. The mean free path for neutral (λ0=(4.9±0.3)·10?6cm) and charged (λ=(3.2±0.2)· 10?6cm) lead 212 atoms in air were computed from the measured diffusion coefficients. All obtained results were compared with values, calculated from theory.  相似文献   

4.
The diffusion of 1H and 2H on the (111) plane of a W field emitter has been studied by the fluctuation method at various coverages. Both activated and unactivated diffusion is observed; the latter shows very little isotope effect, suggesting that coupling to the substrate is so strong that mass renormalization makes the effective masses of 1H and 2H nearly identical. Values of D in the tunneling, i.e. temperature independent, regime are 10?13?5 × 10?14 cm2/s depending on coverage. For activated diffusion at high coverages, corresponding to population of the β1 state E = 2.4?3.2 kcal/mol and D0 = 2 × 10?8 ?5 × 10?7 cm2/s, depending on coverage. For lower coverages, corresponding to β2 population, E = 7–9 kcal/mol, D0 = 9 × 10?6 ?2 × 10?3 cm2/s, again depending on coverage. Similar values are obtained for 2H, with E and D0 values slightly reduced. An exponentially decaying correlation signal for clean W was also seen and interpreted in terms of flip-flop of W atoms.  相似文献   

5.
Field electron microscopy is used to study the surface diffusion of lead on tungsten. A simple method to measure rough values of the diffusion coefficient and its dependence on sub-monolayer coverage is described and tested. In the region around (001) the displacement energy found is about 1.30 eV/atom up to 1015 atoms/cm2 where it decreases to 0.78 eV/atom. In the residual region except (110) this energy at 1.5×1014 atoms/cm2 is 1.22 eV/atom, it decreases at 4 × 1014 atoms/cm2 to 0.61 eV/atom and increases at 1015 atoms/cm2 to 0.78 eV/atom. Corresponding values of the diffusion coefficient D and of the preexponential D0 are given. The dependence of D on submonolayer coverage is discussed.  相似文献   

6.
The theoretical model developed by Lidiard was extended to describe the relationship between the chemical and tracer diffusion coefficients of aliovalent ions in an ionic lattice.It is shown that the relationship between the chemical diffusion coefficient, D, and the tracer diffusion coefficient, D1, is D = 2D1 if the migration of dimers is the principal mechanism of transport and for the migration of trimers D = 3D1 if the concentration of impurity ion is relatively small. These relationships are valid regardless of the charge of the aliovalent or lattice ions.The chemical diffusion coefficients of Cr3+ in Cr-doped MgO were determined for three different temperatures, 1656, 1717 and 1768K, and for the concentration region 2.5×10?2?2.8×10?1 mole% Cr2O3. Using previously determined values for the tracer diffusion coefficient of 51Cr in Cr-doped MgO it was found that for the temperature and concentration region investigated D = (2.00±0.17)D1 which indicates that diffusion proceeds primarily by the migration of dimers.  相似文献   

7.
The depth distribution profiles of sodium atoms in silicon upon high-voltage implantation (ion energy, 300 keV; implantation dose, 5 × 1014 and 3 × 1015 cm ?2) are investigated before and after annealing at temperatures in the range T ann = 300–900°C (t ann = 30 min). Ion implantation is performed with the use of a high-resistivity p-Si (ρ= 3–5 kΩ cm) grown by floating-zone melting. After implantation, the depth distribution profiles are characterized by an intense tail attributed to the incorporation of sodium atoms into channels upon their scattering from displaced silicon atoms. At an implantation dose of 3 × 1015 ions/cm2, which is higher than the amorphization threshold of silicon, a segregation peak is observed on the left slope of the diffusion profile in the vicinity of the maximum after annealing at a temperature T ann = 600°C. At an implantation dose of 5 × 1014 ions/cm2, which is insufficient for silicon amorphization, no similar peak is observed. Annealing at a temperature T ann = 700°C leads to a shift of the profile toward the surface of the sample. Annealing performed at temperatures T ann ≥ 800°C results in a considerable loss of sodium atoms due to their diffusion toward the surface of the sample and subsequent evaporation. After annealing, only a small number of implanted atoms that are located far from the region of the most severe damages remain electrically active. It is demonstrated that, owing to the larger distance between the diffusion source and the surface of the sample, the superficial density of electrically active atoms in the diffusion layer upon high-voltage implantation of sodium ions is almost one order of magnitude higher than the corresponding density observed upon low-voltage implantation (50–70 keV). In this case, the volume concentration of donors near the surface of the sample increases by a factor of 5–10. The measured values of the effective diffusion parameters of sodium at annealing temperatures in the range T ann = 525–900°C are as follows: D 0 = 0.018 cm2/s and E a = 1.29 eV/kT. These parameters are almost identical to those previously obtained in the case of low-voltage implantation.  相似文献   

8.
《Solid State Ionics》2006,177(19-25):1747-1752
Oxygen tracer diffusion coefficient (D) and surface exchange coefficient (k) have been measured for (La0.75Sr0.25)0.95Cr0.5Mn0.5O3−δ using isotopic exchange and depth profiling by secondary ion mass spectrometry technique as a function of temperature (700–1000 °C) in dry oxygen and in a water vapour-forming gas mixture. The typical values of D under oxidising and reducing conditions at ∼ 1000 °C are 4 × 10 10 cm2 s 1 and 3 × 10 8 cm2 s 1 respectively, whereas the values of k under oxidising and reducing conditions at ∼ 1000 °C are 5 × 10 8 cm s 1 and 4 × 10 8 cm s 1 respectively. The apparent activation energies for D in oxidising and reducing conditions are 0.8 eV and 1.9 eV respectively.  相似文献   

9.
《Physics letters. [Part B]》1987,191(3):318-322
We have measured the lifetimes of the D0, D+ and Ds+ mesons with data from the CLEO detector. We find τD0 = (5.0 ± 0.7 ± 0.4) × 10−13s, τD+ = (11.4 ± 1.6 ± 0.7) × 10−13s and τDs+ = (4.7 ± 2.2 ± 0.5) × 10−13s, giving lifetime ratios τD+/τD0 = 2.3 ± 0.5 and τDs+/τD0 = 0.9 ± 0.5.  相似文献   

10.
《Applied Surface Science》1986,26(3):317-325
The segregation rate of Si in amorphous as well as precrystallized Fe81B13.5Si3.5C2 was determined as a function of time at different temperatures below the crystallization temperature. Analysis of the segregation kinetics yielded diffusion parameters of E = 72±9 kJ/mol, D0 = 1.7 × 10−15m2/s for the amorphous specimen and E = 154±5 kJ/mol, D0 = 3.6 × 10−10m2/s for the crystalline specimen. The difference is explained by the initial presence of an oversaturated concentration of structural defects. The correct interpretation of segregation kinetics results for amorphous alloys is discussed.  相似文献   

11.
The specific heat of high-quality Ce x La1 ? x B6 (x = 0, 0.01, 0.03) single crystals is studied in the temperature range 0.4–300 K. LaB6 samples with various boron isotope compositions (10B, 11B, nat B) are analyzed to estimate the effect of boron vacancies. The experimental data are used to take into account the electron component correctly under the renormalization of the density of states at T < 8 K, the contribution of the quasi-local vibrational mode of a rare-earth ion with the Einstein temperature ΘE ≈ 152 K, the Debye contribution from the rigid cage of boron atoms with the Debye temperature ΘD ≈ 1160 K, and the low-temperature Schottky contribution related to the presence of 1.5?2.3% boron vacancies in the rare-earth hexaborides. The detected low-temperature anomalies in the specific heat are shown to be interpreted in terms of the formation of two-level systems with an energy ΔE = 92–98 K caused by the displacement of rare-earth ions from their centrosymmetric positions. A scenario of heavy fermion formation that is alternative to the Kondo mechanism is proposed for the systems with a magnetic impurity.  相似文献   

12.
The spectrum of the ν1 (A1) band of 12CD3F has been recorded with a resolution of 0.010 cm−1 and deconvolved to 0.005 cm−1. Over 1050 transitions have been assigned with K ≤ 16 and J ≤ 42. The spectrum is highly perturbed, exhibiting avoided crossings in most of the observed sub-bands. The origin of most of the local and global resonances has been determined and the coupling constants estimated. Due to the complexity of the spectrum resulting from the 24 potential interacting states in the region, the assigned frequencies were fitted in a restricted manner (K ≤ 3, J ≤ 15), to obtain the following effective constants for the band: ν0 = 2090.8118(20) cm−1, αA = 1.19743 × 10−2 cm−1, and αB = −1.8489 × 10−3 cm−1. From an unrestricted least-squares analysis, fixing the above parameters the β's (Dvx = D0xβvx) were calculated to be βJ = 1.7776 × 10−7 cm−1, βJK = 8.3406 × 10−7 cm−1, and βK = −6.3829 × 10−7 cm−1. These constants serve as good starting parameters for the global analysis necessary to fully analyze the 5-μm region of the 12CD3F spectrum.  相似文献   

13.
Cation self-diffusion D1Fe, parallel to the c axis has been measured as a function of temperature (1100–1300°C) and oxygen partial pressure po2 (2 × 10?3-1 atm) in the same single crystals of Fe2O3 as those used by Chang and Wagner. Whereas the po2 dependence of D1Fe, observed by Chang and Wagner has been confirmed, the absolute value of D1Fe and the activation enthalpy for self-diffusion are much higher than those reported by them. The various diffusion studies indicate that cation self-diffusion occurs by an interstitial-type mechanism. However, the sample-to-sample variations in D1Fe, suggest that all diffusion measurements may have been performed on samples where the defect concentrations are impurity controlled. Impurity diffusion of 60Co, 51Cr, and 88Y has also been measured as a function of po2 at 1200°C. The results indicate that these impurities diffuse by an interstitialcy mechanism in Fe2O3.  相似文献   

14.
《X射线光谱测定》2003,32(5):363-366
The diffusion of Ag in superconducting YBa2Cu3O7 ceramic was studied over the temperature range 700–850 °C by the energy‐dispersive X‐ray fluorescence (EDXRF) technique. For the excitation of silver atoms, an annular Am‐241 radioisotope source (50 mCi) emitting 59.543 keV photons was used. The temperature dependences of Ag diffusion coefficients in grains (D1) and over the grain boundaries (D2) are described by the equations D1 = 1.4 × 10?2exp[?(1.18 ± 0.10)/kT] and D2 = 3.1 × 10?4exp[?(0.87 ± 0.10)/kT]. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Some aspects of the spinodal method of deducing diffusion coefficients are considered. The decomposition kinetics yield the interdiffusion coefficient which is, however, not an intrinsic property of ionic crystals at low temperatures since it depends on the nonequilibrium vacancy concentration. Comparing, though, the spinodal kinetics in crystals doped with aliovalent impurity and undoped crystals enables one to obtain the vacancy diffusion coefficient which is an intrinsic property. The spinodal decomposition has been studied in nominally pure and Ca2+-doped mixed crystals of NaCl-KCl by the thermal gradient method and the cation vacancy diffusion coefficient Dv = 2 × 10−12cm2s−1 at room temperature.  相似文献   

16.
BackgroundPlacenta accreta spectrum (PAS) disorders occur when the placenta adheres abnormally to the uterine myometrium and can have devastating effects on maternal health due to risks of massive postpartum hemorrhage and possible need for emergency hysterectomy. PAS can be difficult to diagnose using routine clinical imaging with ultrasound and structural MRI.ObjectiveTo determine feasibility of using intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) analysis in the diagnosis of the placenta accreta spectrum disorders in pregnant women.MethodsA total of 49 pregnant women were recruited including 14 with pathologically confirmed cases of PAS and 35 health controls without prior cesarean delivery and no suspected PAS by ultrasound. All women underwent diffusion-weighted imaging with an 8 b-value scanning sequence. A semi-automated method for image processing was used, creating a 3D object map, which was then fit to a biexponential signal decay curve for IVIM modeling to determine slow diffusion (Ds), fast diffusion (Df), and perfusion fraction (Pf).ResultsOur results demonstrated a high degree of model fitting (R2 ≥ 0.98), with Pf significantly higher in those with PAS compared to healthy controls (0.451 ± 0.019 versus 0.341 ± 0.022, p = 0.002). By contrast, no statistical difference in the Df (1.70 × 10−2 ± 0.38 × 10−2 versus 1.48 × 10−2 ± 0.08 × 10−2 mm2/s, p = 0.211) or Ds (1.34 × 10−3 ± 0.10 × 10−3 versus 1.45 × 10−3 ± 0.007 × 10−3 mm2/s, p = 0.215) was found between subjects with PAS and healthy controls.ConclusionsThe use of MRI, and IVIM modeling in particular, may have potential in aiding in the diagnosis of PAS when other imaging modalities are equivocal. However, the widespread use of these techniques will require generation of large normative data sets, consistent sequencing protocols, and streamlined analysis techniques.  相似文献   

17.
In order to establish the mechanism and to determine the parameters of lithium transport in electrodes based on lithium-vanadium phosphate (Li3V2(PO4)3), the kinetic model was designed and experimentally tested for joint analysis of electrochemical impedance (EIS), cyclic voltammetry (CV), pulse chronoamperometry (PITT), and chronopotentiometry (GITT) data. It comprises the stages of sequential lithium-ion transfer in the surface layer and the bulk of electrode material’s particles, including accumulation of lithium in the bulk. Transfer processes at both sites are of diffusion nature and differ significantly, both by temporal (characteristic time, τ) and kinetic (diffusion coefficient, D) constants. PITT data analysis provided the following D values for the predominantly lithiated and delithiated forms of the intercalation material: 10?9 and 3 × 10?10 cm2 s?1, respectively, for transfer in the bulk and 10?12 cm2 s?1 for transfer in the thin surface layer of material’s particles. D values extracted from GITT data are in consistency with those obtained from PITT: 3.5–5.8 × 10?10 and 0.9–5 × 10?10 cm2 s?1 (for the current and currentless mode, respectively). The D values obtained from EIS data were 5.5 × 10?10 cm2 s?1 for lithiated (at a potential of 3.5 V) and 2.3 × 10?9 cm2 s?1 for delithiated (at a potential 4.1 V) forms. CV evaluation gave close results: 3 × 10?11 cm2 s?1 for anodic and 3.4 × 10?11 cm2 s?1 for cathodic processes, respectively. The use of complex experimental measurement procedure for combined application of the EIS, PITT, and GITT methods allowed to obtain thermodynamic E,c dependence of Li3V2(PO4)3 electrode, which is not affected by polarization and heterogeneity of lithium concentration in the intercalate.  相似文献   

18.
The diffusion of deposited Pd through the (0001) surface region of zinc has been studied with photoemission at hν = 21.2 eV by following the time evolution of the Zn 3d and Pd 4d peaks for a Pd initial coverage of 1, 3, 10 and 15 monolayers. The time decay of the Pd 4d signal is explained with a model where the diffusion coefficient D is not constant; it is (4.6 ± 0.5) × 10?19 cm2 s?1 for t?7000s, then decreases to (5.5 ± 1) × 10?20 cm2 s?1 for t ? 15,000 s. The D values correlate well with the spectroscopic results on the valence state evolution during diffusion. At short times (higher D) the spectra show an electron energy gain of Pd atoms during diffusion while at higher time (lower D) this gain is negligible. The initial diffusion is chemically driven while at longer times the diffusion becomes gradually entropic.  相似文献   

19.
Diffusion of 51Cr in NiO single crystals in air has been studied by the tracer-sectioning technique. In the temperature range 1192–1642°C, the diffusion coefficient can be expressed by the Arrhenius expression D=Doexp(-Q/RT), with Do=(8·6±1·2)×10?3 cm2/sec and Q=67·4±1·1 kcal/mole. The use of a high specific-activity tracer and a special configuration for the diffusion anneal prevented the self-dopling effect found by Seltzer and the evaporation of chromium from the sample surface. The present results, in conjunction with published results on nickel self-diffusion in NiO and interdiffusion in the NiO?Cr2O3 system, are used to determine a chromium ion-vacancy binding energy of about 5 kcal/mole in pure NiO.  相似文献   

20.
Ground state combination differences obtained from normally allowed and perturbation-allowed transition in the 2ν6 band of 12CH3D have been fitted to obtain the following values for rotational constants: A0 = 5.2508231 ± 0.0000043 cm−1, and D0K = (−7.869 ± 0.23) × 10−5cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号