共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple method of thermal evaporation to fabricate micro and nanostructures of zinc oxide was presented. ZnO micro and nanostructures, prepared under different quantity of O2, were characterized by techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and analytical transmission electron Microscope. The SEM images indicated that the products prepared under the condition of sufficient O2 were needle-like microrods and the samples synthesized under the condition of deficient O2 were nanorods and nanowires with very high aspect ratio. The results of XRD and Raman shifts revealed that the ZnO micro and nanostructures synthesized under different quantity of O2 were both single crystalline with the hexagonal wurtzite structure. The HRTEM images indicated that the ZnO nanowire prepared under the condition of deficient O2 was single crystalline and grown along the direction of [0 0 1]. Photoluminescence measurement was carried out and it showed that the spectra of ZnO micro and nanostructures prepared under different quantity of O2 exhibited similar emission features. In addition, the growth mechanism of ZnO micro and nanostructures was preliminarily discussed. 相似文献
2.
J. Barreto J.A. Rodríguez M. Perlvarez A. Morales B. Garrido C. Domínguez 《Superlattices and Microstructures》2008,43(5-6):588
This paper describes a simple method to analyze the photoluminescent characteristics of materials based on embedded light-emitting nanoclusters. Photoluminescence spectra of deposited silicon sub-oxide layers with the same composition and different thicknesses have been obtained. A saturation of the total luminescence intensity is observed with increase in thickness. By analyzing the photoluminescence spectra several optical and structural parameters can be evaluated. We thus propose a model in which the absorption of light from a nanostructure layer implies the possibility of subsequent luminescence and affects the underlying layers as well. By fitting the data to the developed model, two fundamental parameters are extracted: nanostructures absorption probability, which is independent of the emission energy and the spectra of emission probability of an excited nanostructure which fits a Gaussian shape. 相似文献
3.
Metallic bowtie nanostructures as plasmonic nanoantennas can create highly enhanced local fields when resonating with the incident light. With Au bowtie nanostructures fabricated by lithography method, we experimentally observed that the photoluminescence (PL) spatial profile from a single Au bowtie nanoantenna was strongly dependent on the excitation light polarization. While varying the incident light polarization, the spatial distribution of the PL intensity in the nanogap of an Au bowtie changed as predicted by the simulation results on the electromagnetic field enhancement distribution. The polarization feature of the PL intensity relative to the polarization direction of incident excitation light was also discussed. The study may find application in the design of polarization sensitive plasmonic sensors. 相似文献
4.
Oxaliplatin is one of the most important anticancer drugs at present. However, the mechanism of action of oxaliplatin is still controversial. In this study, the interactions between oxaliplatin and a plasmid DNA have been studied so as to reveal the structural basis of its activity. The structural characteristic of pUC19 DNA (2 ng/μL) incubated with 100 μmol/L and 1000 μmol/L of oxaliplatin for the different time on a freshly cleaved highly ordered pyrolytic graphite (HOPG) surface was investigated by atomic force microscopy (AFM). High resolution AFM observation indicated that oxaliplatin can induce pUC19 DNA molecules change from the extended conformation to the entangled structures with many nodes, and finally to the compact particles. The present AFM results provide structural evidence about the interactions between oxaliplatin and circular duplex DNA containing multiple targets. 相似文献
5.
High density and ultrasmall size of Ge quantum dots (QDs) have been achieved directly on Si(0 0 1) (2 × 1) reconstruction surface. Their detailed morphology was observed by atomic force microscope (AFM) and shows that small pyramids, small domes, huts, and multi-headed large domes coexist in the film grown at 400 °C, while small domes and multi-headed large domes formed at 450 °C. Their low temperature photoluminescence (PL) showed that a very strong non-phonon (NP) peak with a large blue shift of 0.19 eV at 14 K, which can be attributed to their very high areal density, 5.2 × 1011 cm−2, and sub-10-nm mean size, 7.6 ± 2.3 nm. 相似文献
6.
Yasuhiro Sugawara Takayuki Uchihashi Masayuki Abe Seizo Morita 《Applied Surface Science》1999,140(3-4):371-375
We demonstrated a novel method to detect the van der Waals and the electrostatic force interactions simultaneously on an atomic scale, which is based on frequency modulation detection method. For the first time, the surface structure and the surface charge at atomic-scale point defects on the GaAs(110) surface have been simultaneously resolved with true atomic resolution under ultra-high vacuum condition. From the bias voltage dependence of the image contrast, we can verify that the sign of the atomically resolved surface charge at the point defect was positive. 相似文献
7.
B. Bessaïs O. Ben Younes H. Ezzaouia N. Mliki M. F. Boujmil M. Oueslati R. Bennaceur 《Journal of luminescence》2000,90(3-4):101-109
In this paper, we show that the photoluminescence (PL) shifts of p-type porous silicon (PS) are mainly attributed to some morphological changes related to anodisation conditions. We discuss how differences in the stirring and nature of the electrolytic solution can lead to morphological changes of the PS layers. It has been found that when PS is formed in pure aqueous HF solution, it can exhibit a non-conventional and reproducible “porosity – PL peak relationship”. By correlating the PL spectral behaviour and PS morphology throughout a quantum-confinement model, we explain both conventional and non-conventional PL shifts. Correlation of PL and optical absorption (OA) shows that the PL peak energy and the optical absorption edge of PS exhibit the same trend with size effect. The spectral behaviour of OA with regard to that of PL is well analysed within the quantum-confinement model throughout the sizes and shapes of the nanocrystallites forming PS. The value of the effective band gap energy determined from the calculated lowest PL energy almost corresponds to that estimated from the optical absorption coefficient. These results suggest that the lowest radiative transition between the valence band and the conduction band corresponds to the largest luminescent wires, and that the radiative recombination process leading to the PL emission occurs in the c-Si crystallite core. 相似文献
8.
In this work, optical properties of ZnO nanostructures prepared by chemical vapor deposition under different conditions were investigated. ZnO nanostructures were characterized by electron microscopy and photoluminescence. A high intensity green emission and a narrow UV emission band are observed in photoluminescence spectra of ZnO nanostructures related to the below-band-gap and band-edge that their intensities depend on the morphology of the nanostructures. It is considered that the green emission is originated from structural defects. In addition, the influence of thermal treatment and dopants such as iron and copper, on the photoluminescence (PL) properties of the ZnO nanostructures was investigated. 相似文献
9.
抗生物素蛋白(avidin)在生物单分子实验中被广泛用于DNA与修饰表面的连接,同时avidin也可作为一种DNA载体用于基因治疗中.本文利用原子力显微镜(AFM)、动态光散射(DLS)、单分子磁镊(MT)技术系统地研究了avidin与DNA之间的相互作用,以及avidin引起DNA凝聚的机理.首先通过AFM对avidin-DNA复合体形貌进行观察,发现不但有avidin导致DNA凝聚的环状形貌,同时也存在avidin自身聚集引起的DNA凝聚现象,通过定量分析,发现其凝聚尺寸越来越小,而当avidin浓度大于2 ng·μL~(-1)时,其凝聚尺寸又突然变大.DLS实验结果也显示了同样的规律,伴随着avidin浓度的升高,DNA的粒径大小从大约170 nm减小到125 nm左右,其电泳迁移率由-2.76(10~(-4)cm~2·V~(-1)·s~(-1))变化到-0.1(10~(-4)cm~2·V~(-1)·~(-1)).此外,通过MT技术的力谱曲线变化,发现avidin导致的DNA凝聚与其他多价离子相比,长度的变化曲线几乎呈线性变化,偶尔存在少而小的阶跃,这种变化趋势与组蛋白的变化曲线更相似.因此可以判断,avidin导致DNA凝聚是由avidin与DNA的静电吸引和avidin自身聚集两种相互作用引起的. 相似文献
10.
The determination of the elastic field and image force of dislocation in anisotropic media is a nontrivial problem. This work revisits Eshelby’s sextic anisotropic elasticity theory to obtain the stress field of a screw dislocation in an infinite anisotropic solid. The image force of a dislocation in an anisotropic nanowire is then derived by using the concept of ‘image dislocation’. Moreover, this work proposes to study the image force of nanorods by approximating the three-dimensional shape effect as a height-dependent shape function, which could be obtained through curve fitting of the finite element data. The analytical solution is applied to analyse image forces on different dislocations in GaN nanorods oriented along polar (c-axis) and nonpolar (a, m-axis) directions. The result shows the dislocation dissipation could be more effective in a-GaN but less in m-GaN by comparing with the standard growth of c-GaN. The approach developed in this work is applicable to other material systems. Therefore, it could contribute to a wide range of nanostructure design and fabrication for dislocation-free devices. 相似文献
11.
For the fabrication of superconducting devices based on nanostructured thin films, the quality of the starting surface is often of crucial importance. For example, the transport properties of superconducting nanobridges are strongly affected by the geometry and the edge definition of the nanostructures. In this work, we report about AFM characterization of magnesium diboride films and nanobridges fabricated in view of application in superconducting electronics. MgB2 films, obtained by co-deposition method followed by annealing in situ on silicon nitride substrate, have been nanostructured by electron beam lithography and ion milling. The analysis of the AFM images by the height-height correlation function shows that the films have a self-affine smooth textured surface with a RMS roughness of 20 nm. Furthermore, the nanobridges are continuous, with a well-defined geometry and a rounded profile, and the nanostructuration process does not significantly affect the film morphology. 相似文献
12.
Carbon nitride films have been deposited by KrF excimer laser ablation of a rotating graphite target in 5 Pa nitrogen ambient in an inverse pulsed laser deposition configuration, where the backward motion of the ablated species is utilised for film growth on substrates lying in the target plane. Topometric AFM scans of the films, exhibiting elliptical thickness distribution, have been recorded along the axes of symmetry of the deposition area. High resolution AFM scans revealed the existence of disk-like, or somewhat elongated rice-like features of 5-10 nm average thickness and ∼100 nm largest dimension, densely packed over the whole, approximately 14 × 10 cm2 deposition area. The RMS roughness of the film decreased from 9 nm near to the laser spot down to 2 nm in the outer regions. Even the highest RMS value obtained for IPLD films was less than half of the typical, 25 nm roughness measured on simultaneously deposited PLD films. 相似文献
13.
We have observed three-dimensional sponge-like structures as well as strips of connecting pits on the surface of the LR 115 detector after etching, which can be confused with the small tracks formed after short etching time. We have employed an atomic force microscope (AFM) to study these “damages” as well as genuine alpha tracks for short etching time. It was found that while the track and damage openings could be similar in size and shape, the depths for the damages were consistently smaller. Therefore, the depth of the pits will serve as a clear criterion to differentiate between tracks and other damages. The ability to discriminate between genuine tracks from other damages is most important for etching for short time intervals. 相似文献
14.
原子力显微镜观察脂胞囊形貌结构及稳定性 总被引:5,自引:2,他引:5
用原子力显微镜(AFM)观察了液晶态脂胞囊形貌结构和稳定性.实验结果显示,对于1,2-二油酸甘油-3-磷脂酰乙醇胺(DOPE)超分子聚集体,在扫描区域内,可观察到一些大小不同球形颗粒;对于1,2-二油酸甘油-3-磷脂酸乙醇胺(DOPE)和1,2-二油酸甘油-3-磷脂酰胆碱(DOPC)混合的超分子聚集体,则不仅观察到类似脂胞囊的球形颗粒,而且也观察到了双层膜结构,其厚度约为5~6 nm. 相似文献
15.
16.
The adsorption of DNA molecules on mica surface and the following desorption of DNA molecules at ethanol-mica interface were studied using atomic force microscopy. By changing DNA concentration, different morphologies on mica surface have been observed. A very uniform and orderly monolayer of DNA molecules was constructed on the mica surface with a DNA concentration of 30 ng/μL. When the samples were immersed into ethanol for about 15 min, various desorption degree of DNA from mica (0-99%) was achieved. It was found that with the increase of DNA concentration, the desorption degree of DNA from the mica at ethanol-mica interface decreased. And when the uniform and orderly DNA monolayers were formed on the mica surface, almost no DNA molecule desorbed from the mica surface in this process. The results indicated that the uniform and orderly DNA monolayer is one of the most stable DNA structures formed on the mica surface. In addition, we have studied the structure change of DNA molecules after desorbed from the mica surface with atomic force microscopy, and found that the desorption might be ascribed to the ethanol-induced DNA condensation. 相似文献
17.
G. Fasching F.F. Schrey T. Roch A.M. Andrews W. Brezna J. Smoliner G. Strasser K. Unterrainer 《Physica E: Low-dimensional Systems and Nanostructures》2006,32(1-2):183
Photocurrent (PC) spectroscopy is employed to study the carrier escape from self-assembled InAs/GaAs quantum dots (QDs) embedded in a Schottky photodiode structure. As a function of the applied field, we detect a shift of the exciton ground-state transition due to the quantum-confined Stark effect (). The tunneling time, which is directly related to the observed photocurrent linewidth due to τ/(2Γ), changes by a factor of five in the photocurrent regime. The measured linewidth dependency on the electric field is modeled by a simple 1D WKB approximation for the tunneling process, which shows that the energetic position of the wetting layer is important for the measured tunneling time out of the dot. In addition to that we present cross-sectional atomic force measurements (AFM) of the investigated photodiode structure. The method needs a minimum of time and sample preparation (cleaving and etching) to obtain the dot density, dot distribution, and give an estimate of the dot dimensions. Etching only the cleaved surface of the sample opens up the opportunity to determine the properties of a buried dot layer before or even after device fabrication. 相似文献
18.
A continuum model is proposed to describe the process of scanned probe oxidation in the presence of a thin water layer on the surface of a substrate. The model describes the electric field and ion transport in both the liquid and the oxide layers and incorporates the reaction mechanism at the substrate/oxide interface. Further, the influence of the space charge due to ions trapped near the substrate/oxide interface is taken into account.Separation of time scales for the chemical reactions and ion transport as well as the asymptotic limit in terms of a small aspect ratio of the oxide layer are used to reduce the complex system of partial differential equations to a one-dimensional system of ordinary differential equations. The analytical solution of the reduced system results in the evolution equation for the oxide thickness. Numerical simulations of the evolution equation predict features of oxide growth that qualitatively agree with the experimental observations. A parametric study is conducted to determine the influence of the key operating and material parameters on the thickness of the oxide, the electric field, and ion concentration in the system. 相似文献
19.
K. C. Thompson 《光谱学快报》2013,46(3):59-62
The main resonance lines of iodine are in the vacuum ultra-violet region of the spectrum (178.3 and 183.Onm), where air and flame gases absorb very strongly. Thus, at first signt, it would appear impossible to determine iodine directly by atomic absorption or fluorescence spectroscopy. 相似文献
20.
首先用液流拉伸单分子DNA,使其吸附在修饰过的云母基片上.然后让二次液流沿着垂直于已拉伸的DNA的方向流过云母片,用原子力显微镜(AFM)观测,可见DNA单分子片段在基片上形成了一些纳米尺度的悬链线.提出一种“S悬桥”模型能定量地解释这一现象.该研究工作揭示,在DNA的单分子操作中,经典的弹性力学理论足以描述和控制DNA分子二维图形的形成
关键词:
DNA
单分子DNA操纵
原子力显微镜(AFM)
纳米悬链线 相似文献