首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The electronic structure of the phospho-olivine Li(x)FePO4 was studied using soft-x-ray-absorption (XAS) and emission spectroscopies. Characteristic changes in the valence and conduction bands are observed upon delithation of LiFePO4 into FePO4. In LiFePO4, the Fe-3d states are localized with little overlap with the O-2p states. Delithiation of LiFePO4 gives stronger hybridization between Fe-3d states and O-2p states leading to delocalization of the O-2p states. The Fe L-edge absorption spectra yield "fingerprints" of the different valence states of Fe in LiFePO4 and FePO4. Resonant soft-x-ray-emission spectroscopy at the Fe L edge shows strong contributions from resonant inelastic soft x-ray scattering (RIXS), which is described using an ionic picture of the Fe-3d states. Together the Fe L-edge XAS and RIXS study reveals a bonding character of the Fe 3d-O2p orbitals in FePO4 in contrast to a nonbonding character in LiFePO4.  相似文献   

2.
The contribution of a 3d(4) spin configuration to the valence electronic structure of Fe compounds can be probed via spin-selective Fe K-pre-edge absorption spectra, using resonant inelastic X-ray scattering (RIXS). The 3d(4) configuration of Fe(IV) can be unequivocally detected even in a mixture with the high-spin 3d(5) configuration of Fe(III). This is demonstrated on the perovskite FeSrO(3-x) with formal oxidation state Fe(IV). When the technique was applied to an Fe-ZSM-5 catalyst during reaction with N(2)O, no 3d(4) configuration was detected. The formation of Fe(IV) upon reaction of Fe-ZSM-5 with N(2)O can, therefore, be ruled out.  相似文献   

3.
Resonant inelastic X-ray scattering (RIXS) was used to collect Mn K pre-edge spectra and to study the electronic structure in oxides, molecular coordination complexes, as well as the S1 and S2 states of the oxygen-evolving complex (OEC) of photosystem II (PS II). The RIXS data yield two-dimensional plots that can be interpreted along the incident (absorption) energy or the energy transfer axis. The second energy dimension separates the pre-edge (predominantly 1s to 3d transitions) from the main K-edge, and a detailed analysis is thus possible. The 1s2p RIXS final-state electron configuration along the energy transfer axis is identical to conventional L-edge absorption spectroscopy, and the RIXS spectra are therefore sensitive to the Mn spin state. This new technique thus yields information on the electronic structure that is not accessible in conventional K-edge absorption spectroscopy. The line splittings can be understood within a ligand field multiplet model, i.e., (3d,3d) and (2p,3d) two-electron interactions are crucial to describe the spectral shapes in all systems. We propose to explain the shift of the K pre-edge absorption energy upon Mn oxidation in terms of the effective number of 3d electrons (fractional 3d orbital population). The spectral changes in the Mn 1s2p(3/2) RIXS spectra between the PS II S1 and S2 states are small compared to that of the oxides and two of the coordination complexes (Mn(III)(acac)3 and Mn(IV)(sal)2(bipy)). We conclude that the electron in the step from S1 to S2 is transferred from a strongly delocalized orbital.  相似文献   

4.
Two unique octa- and hendeca-nuclear dysprosium(III) clusters incorporating [Dy(4)(μ(3)-OH)(4)](8+) cubane units have been synthesized with the 1,10-phenanthroline-2,9-dicarbaldehyde dioxime (H(2)phendox) ligand and DyCl(3)·6H(2)O or Dy(OAc)(3)·4H(2)O. They are [Dy(8)(OH)(8)(phendox)(6)(H(2)O)(8)]Cl(2)(OH)(2)·18H(2)O·18MeOH (1) and [Dy(11)(OH)(11)(phendox)(6)(phenda)(3)(OAc)(3)](OH)·40H(2)O·7MeOH (2). Adjacent Dy(8) in 1 or Dy(11) in 2 motifs are packed by off-set π-π interactions of the aromatic rings on phendox(2-) to generate a 3D supramolecular architecture in the honeycomb topology and with 1D or 3D channels along the c-axis. Adsorption research shows that complex 1 has selective adsorption ability for H(2)O over small gas molecules (H(2), N(2), CO(2)). Complex 2 is stable upon the removal of guest molecules and the desolvated compound absorbed a considerable amount of CO(2). Furthermore, the oximes underwent hydrolysis to carboxylic acid and the resulting 1,10-phenanthroline-2,9-dicarboxylate link the dysprosium atoms to form a hendecanuclear cluster of 2. Magnetic studies reveal that both clusters exhibit slow magnetic relaxation behavior, expanding upon the recent reports of the pure 4f type single-molecule magnets (SMMs).  相似文献   

5.
A pentanuclear dysprosium cluster, [Dy(5)(μ(3)-OH)(6)(Acc)(6)(H(2)O)(10)]·Cl(9)·24H(2)O (1), has been synthesized through the reaction of 1-amino-cyclohexanel-carboxylic acid (Acc) and DyCl(3)·5H(2)O. Crystal structural analysis reveals that the metal core of cluster 1 shows an unprecedented trigonal bipyramidal (TBP) geometry. Magnetic studies indicate that the Dy(5) cluster exhibits slow magnetic relaxation.  相似文献   

6.
A range of rare earth metal complexes of 2-mercaptopyridine N-oxide (Hmpo) have been synthesized, and studied by elemental analysis and IR spectroscopic technique. Crystal structure of Dy(mpo)3(DMSO)2 (DMSO = dimethyl sulfoxide) has been determined. The complex crystallizes in the triclinic system, space group Pī with lattice parameters: a = 9.602(3), b = 9.803(3), c = 15.498(5)A, α= 89.51(1), β= 85.73(1), γ= 62.99(1)°, Dc = 1.787 g/cm3, C19H24N3O5S5Dy, Mr = 697.21, Z = 2, F(000) = 690, μ = 3.321mm-1, the final R = 0.0237 and wR = 0.0587 for 4116 reflections with I>σ2(I). The coordination number of dysprosium Ⅲ is eight, and its coordination geometry is a somewhat distorted square antiprism with O(3), O(4), O(5), S(3) and O(1), O(2), S(1), S(2) at the tetragonal bases (dihedral angle between their mean planes is 2.9(1)0). Around the Dy atom, three five-membered ring planes (Dy, O, N, C, S) make the dihedral angles of 74.42, 11.31 and 83.72, respectively.  相似文献   

7.
The reactions of LnCl(3) with molten boric acid result in the formation of Ln[B(4)O(6)(OH)(2)Cl] (Ln = La-Nd), Ln(4)[B(18)O(25)(OH)(13)Cl(3)] (Ln = Sm, Eu), or Ln[B(6)O(9)(OH)(3)] (Ln = Y, Eu-Lu). The reactions of AnCl(3) (An = Pu, Am, Cm) with molten boric acid under the same conditions yield Pu[B(4)O(6)(OH)(2)Cl] and Pu(2)[B(13)O(19)(OH)(5)Cl(2)(H(2)O)(3)], Am[B(9)O(13)(OH)(4)]·H(2)O, or Cm(2)[B(14)O(20)(OH)(7)(H(2)O)(2)Cl]. These compounds possess three-dimensional network structures where rare earth borate layers are joined together by BO(3) and/or BO(4) groups. There is a shift from 10-coordinate Ln(3+) and An(3+) cations with capped triangular cupola geometries for the early members of both series to 9-coordinate hula-hoop geometries for the later elements. Cm(3+) is anomalous in that it contains both 9- and 10-coordinate metal ions. Despite these materials being synthesized under identical conditions, the two series do not parallel one another. Electronic structure calculations with multireference, CASSCF, and density functional theory (DFT) methods reveal the An 5f orbitals to be localized and predominately uninvolved in bonding. For the Pu(III) borates, a Pu 6p orbital is observed with delocalized electron density on basal oxygen atoms contrasting the Am(III) and Cm(III) borates, where a basal O 2p orbital delocalizes to the An 6d orbital. The electronic structure of the Ce(III) borate is similar to the Pu(III) complexes in that the Ce 4f orbital is localized and noninteracting, but the Ce 5p orbital shows no interaction with the coordinating ligands. Natural bond orbital and natural population analyses at the DFT level illustrate distinctive larger Pu 5f atomic occupancy relative to Am and Cm 5f, as well as unique involvement and occupancy of the An 6d orbitals.  相似文献   

8.
1 INTRODUCTION Transition-metal thiolato complexes have been of interest for the simulation of many metallo- enzymes where the thiolato group mimics the ligation of cysteinyl residues in proteins. Numerous complexes of transition elements with 1,2-bidentate oxothiolate ligands have been prepared[1~4]. Re- cently, we have studied a few transition metal complexes of 2-mercaptopyridine N-oxide (Hmpo) as bactericidal and antifungal reagents[5~7]. Although Hmpo exhibits unusual versatility…  相似文献   

9.
1s2p resonant inelastic X-ray scattering (RIXS) spectroscopy has been measured for a series of iron oxides, including octahedral and tetrahedral Fe(II) and Fe(III) systems. Their spectral shapes have been analyzed and explained using crystal-field multiplet simulations. The RIXS planes and the K-edge and L-edge X-ray absorption spectra related to these RIXS planes will be discussed with respect to their analytical opportunities. It is concluded that the full power and possibilities of 1s2p RIXS needs an overall resolution of 0.3 eV. This will yield a technique with more detailed information than K-edge and L-edge X-ray absorption combined, obtained in a single experiment. Another major advantage is that 1s2p RIXS involves only hard X-rays, and experiments under essentially any condition and on any system are feasible.  相似文献   

10.
The electronic properties of a series of colossal magnetoresistance (CMR) compounds, namely LaMnO3, La(1-x)Ba(x)(MnO3 (0.2 < or = x < or = 0.55), La(0.76)Ba(0.24)Mn(0.84)Co(0.16)O3, and La(0.76)Ba(0.24)Mn(0.78)Ni(0.22)O3, have been investigated in a detailed spectroscopic study. A combination of X-ray photoelectron spectroscopy (XPS), X-ray emission spectroscopy (XES), X-ray absorption spectroscopy (XAS), and resonant inelastic X-ray scattering (RIXS) was used to reveal a detailed picture of the electronic structure in the presence of Ba, Co, and Ni doping in different concentrations. The results are compared with available theory. The valence band of La(1-x)()Ba(x)MnO3 (0 < or = x < or = 0.55) is dominated by La 5p, Mn 3d, and O 2p states, and strong hybridization between Mn 3d and O 2p states is present over the whole range of Ba concentrations. Co-doping at the Mn site leads to an increased occupancy of the e(g) states near the Fermi energy and an increase in the XPS valence band intensity between 0.5 and 5 eV, whereas the Ni-doped sample shows a lower density of occupied states near the Fermi energy. The Ni d states are located in a band spanning the energy range of 1.5-5 eV. XAS spectra indicate that the hole doping leads to mixed Mn 3d-O 2p states. Furthermore, RIXS at the Mn L edge has been used to probe d-d transitions and charge-transfer excitations in La(1-x)Ba(x)MnO3.  相似文献   

11.
Guo YN  Chen XH  Xue S  Tang J 《Inorganic chemistry》2011,50(19):9705-9713
Complexation of dysprosium(III) with the heterodonor chelating ligand o-vanillin picolinoylhydrazone (H(2)ovph) in the presence of different bases affords three new dinuclear dysprosium(III) coordination compounds, namely, [Dy(2)(ovph)(2)(NO(3))(2)(H(2)O)(2)]·2H(2)O (1), [Dy(2)(Hovph)(ovph)(NO(3))(2)(H(2)O)(4)]·NO(3)·2CH(3)OH·3H(2)O (2), and Na[Dy(2)(Hovph)(2)(μ(2)-OH)(OH)(H(2)O)(5)]·3Cl·3H(2)O (3), where the aroylhydrazone ligand adopts different coordination modes in respective structures depending on the reaction conditions, as revealed by single-crystal X-ray analyses to be due to their tautomeric maneuver. The magnetic properties of 1-3 are drastically distinct. Compounds 1 and 2 show single-molecule-magnet behavior, while no out-of-phase alternating-current signal is noticed for 3. The structural differences induced by the different coordinate fashions of the ligand may influence the strength of the local crystal field, the magnetic interactions between metal centers, and the local tensor of anisotropy on each Dy site and their relative orientations, therefore generating dissimilar dynamic magnetic behavior.  相似文献   

12.
Chlorine K-edge X-ray absorption spectroscopy (XAS) and ground-state and time-dependent hybrid density functional theory (DFT) were used to probe the electronic structures of O(h)-MCl(6)(2-) (M = Ti, Zr, Hf, U) and C(4v)-UOCl(5)(-), and to determine the relative contributions of valence 3d, 4d, 5d, 6d, and 5f orbitals in M-Cl bonding. Spectral interpretations were guided by time-dependent DFT calculated transition energies and oscillator strengths, which agree well with the experimental XAS spectra. The data provide new spectroscopic evidence for the involvement of both 5f and 6d orbitals in actinide-ligand bonding in UCl(6)(2-). For the MCl(6)(2-), where transitions into d orbitals of t(2g) symmetry are spectroscopically resolved for all four complexes, the experimentally determined Cl 3p character per M-Cl bond increases from 8.3(4)% (TiCl(6)(2-)) to 10.3(5)% (ZrCl(6)(2-)), 12(1)% (HfCl(6)(2-)), and 18(1)% (UCl(6)(2-)). Chlorine K-edge XAS spectra of UOCl(5)(-) provide additional insights into the transition assignments by lowering the symmetry to C(4v), where five pre-edge transitions into both 5f and 6d orbitals are observed. For UCl(6)(2-), the XAS data suggest that orbital mixing associated with the U 5f orbitals is considerably lower than that of the U 6d orbitals. For both UCl(6)(2-) and UOCl(5)(-), the ground-state DFT calculations predict a larger 5f contribution to bonding than is determined experimentally. These findings are discussed in the context of conventional theories of covalent bonding for d- and f-block metal complexes.  相似文献   

13.
The Schiff base compound 2,2'-{[(2-aminoethyl)imino]bis[2,1-ethanediyl-nitriloethylidyne]}bis-2-hydroxy-benzoic acid (H(4)L) as a proligand was prepared in situ. This proligand has three potential coordination pockets which make it possible to accommodate from one to three metal ions allowing for the possible formation of mono-, di-, and trinuclear complexes. Reaction of in situ prepared H(4)L with Dy(NO(3))(3)·5H(2)O resulted in the formation of a mononuclear complex [Dy(H(3)L)(2)](NO(3))·(EtOH)·8(H(2)O) (1), which shows SMM behavior. In contrast, reaction of in situ prepared H(4)L with Mn(ClO(4))(2)·6H(2)O and Dy(NO(3))(3)·5H(2)O in the presence of a base resulted in a trinuclear mixed 3d-4f complex (NHEt(3))(2)[Dy{Mn(L)}(2)](ClO(4))·2(H(2)O) (2). At low temperatures, compound 2 is a weak ferromagnet. Thus, the SMM behavior of compound 1 can be switched off by incorporating two Mn(II) ions in close proximity either side of the Dy(III). This quenching behavior is ascribed to the presence of the weak ferromagnetic interactions between the Mn(II) and Dy(III) ions, which at T > 2 K act as a fluctuating field causing the reversal of magnetization on the dysprosium ion. Mass spectrometric ion signals related to compounds 1 and 2 were both detected in positive and negative ion modes via electrospray ionization mass spectrometry. Hydrogen/deuterium exchange (HDX) reactions with ND(3) were performed in a FT-ICR Penning-trap mass spectrometer.  相似文献   

14.
Interactions of a singly negatively charged iron atom with water molecules, Fe(-)-(H(2)O)(n≤6), in the gas phase were studied by means of density functional theory. All-electron calculations were performed using the B3LYP functional and the 6-311++G(2d,2p) basis set for the Fe, O, and H atoms. In the lowest total energy states of Fe(-)-(H(2)O)(n), the metal-hydrogen bonding is stronger than the metal-oxygen one, producing low-symmetry structures because the water molecules are directly attached to the metal by basically one of their hydrogen atoms, whereas the other ones are involved in a network of hydrogen bonds, which together with the Fe(δ-)-H(δ+) bonding accounts for the nascent hydration of the Fe(-) anion. For Fe(-)-(H(2)O)(3≤n), three-, four-, five-, and six-membered rings of water molecules are bonded to the metal, which is located at the surface of the cluster in such a way as to reduce the repulsion with the oxygen atoms. Nevertheless, internal isomers appear also, lying less than 3 or 5 kcal/mol for n = 2-3 or n = 4-6. These results are in contrast with those of classical TM(+)-(H(2)O)(n) complexes, where the direct TM(+)-O bonding usually produces high symmetry structures with the metal defining the center of the complex. They show also that the Fe(-) anions, as the TM(+) ions, have great capability for the adsorption of water molecules, forming Fe(-)-(H(2)O)(n) structures stabilized by Fe(δ-)-H(δ+) and H-bond interactions.  相似文献   

15.
Two types of structurally related one-dimensional coordination polymers were prepared by reacting lanthanide trichloride hydrates [LnCl(3)·(H(2)O)(m)] with dibenzoylmethane (Ph(2)acacH) and a base. Using cesium carbonate (Cs(2)CO(3)) and praseodymium, neodymium, samarium, or dysprosium salts yielded [Cs{Ln(Ph(2)acac)(4)}](n) (Ln = Pr (1), Nd (2), Sm (3), Dy (4)) in considerable yields. Reaction of potassium tert-butoxide (KOtBu) and the neodymium salt [NdCl(3)·(H(2)O)(6)] with Ph(2)acacH resulted in [K{Nd(Ph(2)acac)(4)}](n) (5). All polymers exhibit a heterobimetallic backbone composed of alternating lanthanide and alkali metal atoms which are bridged by the Ph(2)acac ligands in a linear fashion. ESI-MS investigations on DMF solutions of 1-5 revealed a dissociation of all the five compounds upon dissolution, irrespective of the individual lanthanide and alkali metal present. Temporal profiles of changes in optical density were acquired performing pump/probe experiments with DMF solutions of 1-5 via femtosecond laser spectroscopy, highlighting a lanthanide-specific relaxation dynamic. The corresponding relaxation times ranging from seven picoseconds to a few hundred picoseconds are strongly dependent on the central lanthanide atom, indicating an intramolecular energy transfer from ligands to lanthanides. This interpretation also demands efficient intersystem crossing within one to two picoseconds from the S(1) to T(1) level of the ligands. Magnetic studies show that [Cs{Dy(Ph(2)acac)(4)}](n) (4) has slow relaxation of the magnetization arising from the single Dy(3+) ions and can be described as a single-ion single molecule magnet (SMM). Below 0.5 K, hysteresis loops of the magnetization are observed, which show weak single chain magnet (SCM) behavior.  相似文献   

16.
The potential of 1s2p resonant inelastic (Raman) X-ray scattering (RIXS) is demonstrated for a series of Ni coordination complexes. In this technique, incident and scattered photon energies lie in the hard X-ray range (>5 keV). The 1s2p RIXS contour plots provide information that is complementary to K-edge and L-edge spectroscopy. RIXS spectroscopy promises to be a valuable probe of electronic structure  相似文献   

17.
First-principles calculations using the augmented plane wave plus local orbitals method, as implemented in the WIEN2K code, have been carried out to study the A-B intersite charge transfer and the correlated electrical and magnetic properties of the perovskite BiCu(3)Fe(4)O(12), especially as regards the charge transfer. The results indicate that the charge transfer between A-site Cu and B-site Fe is by way of O 2p orbitals, and during this process orbital hybridization plays an important role. More importantly, the charge transfer is of 3d(9) + 4d(5)L(0.75) →3d(9)L + 4d(5) type (here L denotes an oxygen hole or a ligand hole). During this process, the magnetic interaction experiences a transition from Cu-Fe ferrimagnetic coupling to G-type antiferromagnetic coupling within B-site Fe with paramagnetic Cu(3+). As to electrical property, it undergoes a metal to insulator transition. All our calculated results are consistent with the available experimental results.  相似文献   

18.
The reaction of LH3 with Ni(ClO4)(2).6H 2O and lanthanide salts in a 2:2:1 ratio in the presence of triethylamine leads to the formation of the trinuclear complexes [L2Ni2Ln][ClO4] (Ln=La (2), Ce (3), Pr (4), Nd (5), Sm (6), Eu (7), Gd (8), Tb (9), Dy (10), Ho (11) and Er (12) and L: (S)P[N(Me)NCH-C6H3-2-O-3-OMe]3). The cationic portion of these complexes consists of three metal ions that are arranged in a linear manner. The two terminal nickel(II) ions are coordinated by imino and phenolate oxygen atoms (3N, 3O), whereas the central lanthanide ion is bound to the phenolate and methoxy oxygen atoms (12O). The Ni-Ni separations in these complexes range from 6.84 to 6.48 A. The Ni-Ni, Ni-Ln and Ln-O phenolate bond distances in 2-12 show a gradual reduction proceeding from 2 to 12 in accordance with lanthanide contraction. Whereas all of the compounds (2-12) are paramagnetic systems, 8 displays a remarkable ST=(11)/2 ground state induced by an intramolecular Ni. . .Gd ferromagnetic interaction, and 10 is a new mixed metal 3d/4f single-molecule magnet generated by the high-spin ground state of the complex and the magnetic anisotropy brought by the dysprosium(III) metal ion.  相似文献   

19.
Hemes (iron porphyrins) are involved in a range of functions in biology, including electron transfer, small-molecule binding and transport, and O2 activation. The delocalization of the Fe d-electrons into the porphyrin ring and its effect on the redox chemistry and reactivity of these systems has been difficult to study by optical spectroscopies due to the dominant porphyrin pi-->pi(*) transitions, which obscure the metal center. Recently, we have developed a methodology that allows for the interpretation of the multiplet structure of Fe L-edges in terms of differential orbital covalency (i.e., differences in mixing of the d-orbitals with ligand orbitals) using a valence bond configuration interaction (VBCI) model. Applied to low-spin heme systems, this methodology allows experimental determination of the delocalization of the Fe d-electrons into the porphyrin (P) ring in terms of both P-->Fe sigma and pi-donation and Fe-->P pi back-bonding. We find that pi-donation to Fe(III) is much larger than pi back-bonding from Fe(II), indicating that a hole superexchange pathway dominates electron transfer. The implications of the results are also discussed in terms of the differences between heme and non-heme oxygen activation chemistry.  相似文献   

20.
Hao X  Xu Y  Lv M  Zhou D  Wu Z  Meng J 《Inorganic chemistry》2008,47(11):4734-4739
First principles calculations using the augmented plane wave plus local orbitals method, as implemented in the WIEN2k code, have been used to investigate the electronic and magnetic properties of YBaFe2O5, especially as regards the charge-orbital ordering. Although the total 3d charge disproportion is rather small, an orbital order parameter defined as the difference between t2g orbital occupations of Fe2+ and Fe3+ cations is large (0.73) and gives unambiguous evidence for charge and orbital ordering. Strong hybridization between O2p and Fe e g states results in the nearly complete loss of the separation between the total charges at the Fe2+ and Fe3+ atoms. Furthermore, the relationship between the orbital ordering and charge ordering is also discussed. The dxz orbital ordering is responsible for the stability of the G-type antiferromagnetic spin ordering and the charge ordering pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号