首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports a comparative study about extraction methods used to obtain anthraquinones (AQs) from stems and leaves of Heterophyllae pustulata Hook (Rubiáceae). One of the conventional procedures used to extract these metabolites from a vegetable matrix is by successive Soxhlet extractions with solvents of increasing polarity: starting with hexane to eliminate chlorophylls and fatty components, following by benzene and finally ethyl acetate. However, this technique shows a low extraction yield of total AQs, and consumes large quantities of solvent and time. Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) have been investigated as alternative methods to extract these compounds, using the same sequence of solvents. It was found that UAE increases the extraction yield of total AQs and reduces the time and amount of solvent used. Nevertheless, the combination UAE with benzene, plus MAE with ethyl acetate at a constant power of 900 W showed the best results. A higher yield of total AQs was obtained in less time and using the same amount of solvent that UAE. The optimal conditions for this latter procedure were UAE with benzene at 50 °C during 60 min, followed by MAE at 900 W during 15 min using ethyl acetate as extraction solvent.  相似文献   

2.
Polyphenols in carobs have recently attracted great attention due to their wide range of biological and health promoting effects. A comprehensive study was conducted to find an optimum method for the extraction, purification and characterization of these valuable bioactive substances. Under this framework, the ultrasound-assisted extraction (UAE) of polyphenols from carob pulp was optimized by the maximization of the yield in total phenolics using response surface methodology. In particular, the effects of solid-solvent ratio, solvent concentration, extraction time, sonication amplitude, and sonication mode were investigated and optimized using a complete experimental design. In comparison to conventional extraction techniques, UAE offered a higher yield of antioxidants and a shorter processing time. Solid-phase extraction was evaluated as a clean-up strategy prior to the electrophoretic analysis of extracts. The results from the analysis of real samples revealed the predominance of gallic acid and highlighted the great influence of the ripening stage on carobs composition.  相似文献   

3.
An ultrasonic reactor (UR) was developed and coupled to a digital movie-based flow-batch analyzer (DM-FBA) for the ultrasonic-assisted extraction (UAE) and fast determination of catalase and lipase activities in bovine and poultry livers. The lab-made UR mainly consisted of a borosilicate glass container and a piezoelectric disc. The DM-FBA mainly consisted of a webcam, an ultrasonic actuator controller, a peristaltic pump, six solenoid valves, a valve driver, a mixing chamber, a magnetic stirrer, an Arduino Mega 2560, and a personal computer. This setup, named UR-DM-FBA, was controlled by custom software. Ultrasound (US) frequency, US power, sonication time, and concentration of extraction agent were optimized using the Taguchi method. Experiments at silent conditions (mechanical stirring at 1500 rpm) were carried out to evaluate extraction efficiency. Optimized parameters for the UAE of catalase were US frequency of 30 kHz, 2.0 mL of Triton X-100, sonication time of 270 s, and US power of 10.8 W. For the UAE of lipase, the optimized parameters were US frequency of 20 kHz, 0.30 mL of triethanolamine, sonication time of 270 s, and US power of 18 W. Catalase and lipase activities obtained with the UR were, on average, 1.9 × 103% and 2.0 × 103% higher than those obtained at silent conditions, respectively, which indicates that that the lab-made UR was capable of extracting these enzymes more efficiently. Determinations using the UR-DM-FBA were highly accurate (relative error ranging from −1.98% to 1.96% for bovine catalase, −0.65% to 0.76% for bovine lipase, −2.03 to 2.08% for poultry catalase, and −0.55% to 0.64% for poultry lipase) and precise (overall coefficient of variation <0.02% for bovine and poultry catalase and <0.2% for bovine and poultry lipase). Results obtained with the proposed system and reference methods were in good agreement according to the paired t-test (95% confidence level). High sampling rates (>69 h−1) and low sample/reagent consumption (<1.6 mL) were also obtained. Due to the highly efficient UAE, the proposed system can be applied for fast and accurate quantification of lipase and catalase in biological samples with low waste generation.  相似文献   

4.
From the recent market trend, there is a huge demand for the bioactive compounds from various food matrices that could be capable enough to combat the emerging health effects in day-to-day life. Fenugreek is a well-known spice from ancient times for its medicinal and health benefits. In the present study, two methods of green extraction microwave (MAE) and ultrasound (UAE) assisted were studied in regard of extraction of fenugreek diosgenin. In this study, solvent type (acetone, ethanol, hexane and petroleum ether), solvent concentration (40, 60, 80 and 100%) and treatment time (1.5, 3.0, 4.5 and 6.0 min and 30, 40, 50 and 60 min for MAE and UAE method respectively) was varied to observe the effect of these parameters over extract yield and diosgenin content. The results of this study revealed that treatment time, type of solvent and its concentration and method adopted for extraction of diosgenin has significant effect. In relation with better yield extract and diosgenin content, the yield of fenugreek seed extract was 7.83% with MAE and 21.48% with UAE of fenugreek seed powder at 80% ethanol concentration at 6 and 60 min respectively. The content of diosgenin was observed in fenugreek seed powder extract was 35.50 mg/100 g in MAE and 40.37 mg/100 g in UAE with 80% ethanol concentration at 6 and 60 min respectively. The overall range of yield of fenugreek extract was varied from 1.04% to 32.48% and diosgenin content was 15.82 mg/100 g to 40.37 mg/100 g of fenugreek seed powder including both extraction methods. This study revealed that UAE would impose better ways for preparing fenugreek extract and observing diosgenin content from fenugreek seeds.  相似文献   

5.
In this study, microwave pretreatment and grinding treatment were used to enhance sulforaphane formation, then ultrasonic-assisted extraction (UAE) was applied to extract sulforaphane using simultaneous hydrolysis and extraction method. The effects of various parameters, which were ultrasonic time, ultrasonic power, solid-water ratio and solid-ethyl acetate ratio on the extraction rate of sulforaphane were investigated. The results showed that microwave pretreatment enhanced sulforaphane formation. Excessive size reduction did not increase or even reduced extraction rate of sulforaphane. Simultaneous hydrolysis and extraction significantly increased extraction rate of sulforaphane compared to hydrolysis followed by extraction. UAE accelerated mass transfer and the solubilization of the targeted compounds due to the acoustic cavitation effect, thus enhanced enzymatic hydrolysis of glucoraphanin and the extraction rate of sulforaphane. The extraction rate of sulforaphane using UAE with simultaneous hydrolysis and extraction was 4.07-fold of the conventional extraction method. UAE was an effective method to extract sulforaphane from broccoli seeds since it led to higher yield of sulforaphane in a much shorter extraction time.  相似文献   

6.
Mitragyna speciosa, a tropical plant indigenous to Southeast Asia, is well known for its psychoactive properties. Its leaves are traditionally chewed by Thai and Malaysian farmers and manual labourers as it causes a numbing, stimulating effect. The present study aims to evaluate alkaloid yield and composition in the leaf extracts. For this purpose we have compared several non-conventional extraction techniques with classic procedures (room temperature or under heating). Dried M. speciosa leaves belonging to three batches of different origin (from Thailand, Malaysia and Indonesia) were extracted using ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and supercritical carbon dioxide extraction SFE-CO2, using methanol, ethanol, water and binary mixtures. The extracts were compared using an HPLC/ESI-MS analysis of mitragynine and four other related alkaloids which were present in the alkaloid fraction. The extraction technique influences both the raw product yield and the relative alkaloid content of M. speciosa leaves. Of the several methods tested, MAE in a closed vessel at 110 °C (60 W, methanol/water 1:1) gave the highest alkaloid fraction amount, while UAE with an immersion horn at 25 °C (21.4 kHz, 50 W, methanol) showed the best yield for mitragynine.This work may prove to be a useful contribution to forensic, toxicological and pharmacognosy studies. Although the potential applications of M. speciosa alkaloids clearly need further investigation, these results may facilitate the scaling-up of their extraction.  相似文献   

7.
The ultrasound-assisted extraction (UAE) process of chlorophylls (a, b) and carotenoids in aqueous ethanol solutions from spinach leaves was upscaled from a batch laboratory reactor to a continuous modular flow-cell of pilot scale. The extraction in the laboratory scale was organized in a loop reactor, where pulp was circulated between a stirred vessel and the ultrasound reactor. The pilot scale extraction was made in a novel continuous tubular flow-cell reactor. The analysis of the experimental data proved that the ultrasound application provided a better extraction yield. In the laboratory scale, the application of ultrasound (24 kHz and 2500 W/L) showed the 2.6-fold higher maximum extraction yield compared to non-sonicated conventional solvent extraction. In the pilot scale, the effect was less significant (1.9-fold), due to smaller ultrasound power density (25 kHz and 1500 W/L). The scale-up of the UAE was based on equal extraction yield at both scales. The scale-up revealed that 2.5-fold higher volume-specific ultrasound power is required in the pilot scale to reach the yield obtained in the laboratory scale reactor.  相似文献   

8.
The effect of high-power ultrasound on olive paste, on laboratory thermo-mixing operations for virgin olive oil extraction, has been studied. Direct sonication by an ultrasound probe horn (105 W cm−2 and 24 kHz) and indirect sonication with an ultrasound-cleaning bath (150 W and 25 kHz) were applied and their effects compared with the conventional thermal treatment.

A quick-heating of olive paste, from ambient (12–20 °C) to optimal temperature conditions (28–30 °C), and an oil extractability improvement were observed when applying sonication. Better extractability was obtained by direct sonication for high moisture olives (>50%) whereas indirect sonication gave greater extractability for low moisture olive fruits (<50%).

Optimal application of ultrasound was achieved with direct sonication for 4 min at the beginning of paste malaxation and with indirect sonication during the malaxation time.

Effect of high-power ultrasound on oil quality parameters and nutritional and sensory characteristics were studied. Changes in quality parameters (free acidity value, peroxide value, K270 and K232) were not found, however significant effects on the levels of bitterness, polyphenols, tocopherols (vitamin E), chlorophyll and carotenoids were observed. Oils from sonicated pastes showed lower bitterness and higher content of tocopherols, chlorophylls and carotenoids. Related to sensory characteristics, off-flavour volatiles were not detected in oils from sonication treatments. Total peak areas of volatiles and the ratio hexanal/E-2-hexenal, as determined by SPME analysis, were lower than non-sonicated reference oils; sensory evaluation by panel test showed higher intensity of positive attributes and lesser of negative characteristics than those untreated.  相似文献   


9.
The extracting technology including ultrasonic and microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomato paste were optimized and compared. The results showed that the optimal conditions for UMAE were 98 W microwave power together with 40 KHz ultrasonic processing, the ratio of solvents to tomato paste was 10.6:1 (V/W) and the extracting time should be 367 s; as for UAE, the extracting temperature was 86.4 °C, the ratio of the solvents to tomato paste was 8.0:1 (V/W) and the extracting time should be 29.1 min, while the percentage of lycopene yield was 97.4% and 89.4% for UMAE and UAE, respectively. These results implied that UMAE was far more efficient extracting method than UAE.  相似文献   

10.
Curcumin, a dietary phytochemical, has been extracted from rhizomes of Curcuma amada using ultrasound assisted extraction (UAE) and the results compared with the conventional extraction approach to establish the process intensification benefits. The effect of operating parameters such as type of solvent, extraction time, extraction temperature, solid to solvent ratio, particle size and ultrasonic power on the extraction yield have been investigated in details for the approach UAE. The maximum extraction yield as 72% was obtained in 1 h under optimized conditions of 35 °C temperature, solid to solvent ratio of 1:25, particle size of 0.09 mm, ultrasonic power of 250 W and ultrasound frequency of 22 kHz with ethanol as the solvent. The obtained yield was significantly higher as compared to the batch extraction where only about 62% yield was achieved in 8 h of treatment. Peleg’s model was used to describe the kinetics of UAE and the model showed a good agreement with the experimental results. Overall, ultrasound has been established to be a green process for extraction of curcumin with benefits of reduction in time as compared to batch extraction and the operating temperature as compared to Soxhlet extraction.  相似文献   

11.
A green method for simultaneous extraction and enrichment of flavonoids from Euonymus alatus was developed by ultrasonic-assisted extraction (UAE) and temperature-induced cloud point extraction (TICPE) using PEG-base aqueous solution as the extractant. Based on screening different molecular weights of PEGs, PEG-400/water was used as the extractant, and the effects of key factors on extraction yields of flavonoids were investigated by single-factor experiments and response surface methodology (RSM). The optimum conditions of UAE were as follows: PEG-400 concentration of 16% (w/w), particle size of 80 mesh, solvent-to-material ratio of 60:1, extraction temperature of 90 °C and extraction time of 15 min. The results obtained by validation experiments were consistent with the values predicted by RSM. Temperature-induced formation of the aqueous two-phase system (ATPS) and TICPE process were further investigated by controlling temperature and adding (NH4)2SO4. In the presence of (NH4)2SO4, the ATPS formed at 75 ℃ and pH 3.5 could effectively improve separation and recovery of flavonoids with enrichment factor of above five times. Gallic acid, catechin, dihydromyricetin and ellagic acid in the extract were identified and confirmed by UPLC-Q-TOF-MS and the corresponding standards. The UAE-TICPE coupled to HPLC was successfully applied for extraction and determination of flavonoids in two batches of Euonymus alatus. The extraction yields of catechin, dihydromyricetin and total flavonoids were 0.377–0.684 mg/g, 1.091–1.353 mg/g and 2.612–3.146 mg/g, respectively. Compared to conventional extraction methods, PEG-based UAE integrated with TICPE in one-step procedure exhibited higher extraction efficiency and better extraction selectivity.  相似文献   

12.
Anthocyanins (Acys) are naturally occurring compounds that impart color to fruit, vegetables and plants. The extraction of Acys from red raspberry (Rubus idaeus L. var. Heritage) by ultrasound-assisted process (UAP) was studied. A central composite rotate design (CCRD) was used to obtain the optimal conditions of ultrasound-assisted extraction (UAE), and the effects of operating conditions, such as the ratio of solvents to materials, ultrasonic power and extraction time, on the extraction yield of Acys were studied through response surface methodology (RSM). The optimized conditions of UAE were as follows: ratio of solvents to materials was 4:1 (ml/g), extraction time was 200 s, and ultrasonic power was 400 W. Under these conditions 34.5 mg of Acys from 100 g of fresh fruits (TAcy, expressed as cyanidin-3-glucoside), approximately 78.13% of the total red pigments, could be obtained by UAE. The Acys compositions of extracts were identified by high-performance liquid chromatography–mass spectrometry (HPLC–MS), 12 kinds of Acys had been detected and eight kinds of Acys were characterized. Result indicated that cyanidin-3-sophoroside, cyanidin-3-(2G-glucosylrutinoside), cyanidin-3-sambubioside, cyanidin-3-rutinoside, cyanidin-3-xylosylrutinoside, cyanidin-3-(2G-glucosylrutinoside), and cyanidin-3-rutinoside were main components in extracts. In addition, in comparison with the conventional solvent extraction, UAE is more efficient and rapid to extract Acys from red raspberry, due to the strong disruption of fruit tissue structure under ultrasonic acoustic cavitation, which had been observed with the scanning electron microscopy (SEM). However, the Acys compositions in extracts by both methods were similar, which were investigated using HPLC profile.  相似文献   

13.
Intensification of leaching process by dual-frequency ultrasound   总被引:10,自引:0,他引:10  
Ultrasound is gaining importance in metal extraction process. In the previous laboratory scale investigation the authors have established the positive influence of ultrasound on copper recovery from oxide ores of Malanjkhand, Madhya Pradesh, India in an ammonical media. The process parameters in a conventional agitation method were optimized and a maximum recovery of ≈32% in 20 min was obtained without sonication. The recovery was increased to ≈78% by the application of ultrasound over the same period with several advantages like decrease in leaching time and the reagent consumption. In the present study the leaching process is intensified by studying the metal recovery variation at different ultrasonic frequencies (20, 40, 43 and 720 kHz) and intensities (up to 8 W cm−2) with sonication time. The results show that sinusoidal ultrasound even at larger intensity has some limitations with single frequency. However, simultaneous application of dual frequency 20 and 40 kHz ultrasound enhanced extraction rates along with increased yield. While conventional single frequency exposure at either one of the two frequencies at the same acoustic power level did not yield similar results, application of two wave sources, as used in the study revealed that it is possible to save energy through lowering of time of operation process.  相似文献   

14.
Ultrasound-assisted extraction is widely recognized as an eco-friendly technique due to low solvent consumption and time extraction as well as enhanced extraction efficiency with respect to conventional methods. Nevertheless, it would be convenient to avoid the usually used organic solvents to reduce the environment pollution. In this regard, Deep Eutectic Solvents (DES) represent nowadays a green and sustainable alternative for the extraction of bioactive compounds from natural sources. In this study, an efficient extraction of stevioside and rebaudioside A from Stevia rebaudiana coupling ultrasound with DES was developed. A solvent screening was performed using the predictive approach COnductor-like Screening MOdel for Real Solvent (COSMO-RS). The effect of three independent variables, namely % of water, temperature, and sonication amplitude, were investigated by the response surface methodology (RSM). Comparing ultrasound-assisted extraction (UAE) with conventional extraction, it has been demonstrated that the amount of steviol glycosides through UAE is almost three times higher than that obtained by the conventional method. Possible physicochemical factors involved in the UAE mechanism were discussed.  相似文献   

15.
Lycopene extraction was carried out via the ultrasonic assisted extraction (UAE) with response surface methodology (RSM). Sonication enhanced the efficiency of relative lycopene yield (enhancement of 26% extraction yield of lycopene in 6 replications at 40.0 min, 40.0 °C and 70.0% v/w in the presence of ultrasound), lowered the extraction temperature and shortened the total extraction time. The extraction was applied with the addition of oxygen-free nitrogen flow and change of water route during water bath sonication. The highest relative yield of lycopene obtained was 100% at 45.0 °C with total extraction time of 50.0 min (30:10:10) and ratio of solvent to freeze-dried tomato sample (v/w) of 80.0:1. Optimisation of the lycopene extraction had been performed, giving the average relative lycopene yield of 99% at 45.6 min, 47.6 °C and ratio of solvent to freeze-dried tomato sample (v/w) of 74.4:1. From the optimised model, the average yield of all-trans lycopene obtained was 5.11 ± 0.27 mg/g dry weight. The all-trans lycopene obtained from the high-performance liquid chromatography (HPLC) chromatograms was 96.81 ± 0.81% with 3.19 ± 0.81% of cis-lycopenes. The purity of total-lycopene obtained was 98.27 ± 0.52% with β-carotene constituted 1.73 ± 0.52% of the extract. The current improved, UAE of lycopene from tomatoes with the aid of RSM also enhanced the extraction yield of trans-lycopene by 75.93% compared to optimised conventional method of extraction. Hence, the current, improved UAE of lycopene promotes the extraction yield of lycopene and at the same time, minimises the degradation and isomerisation of lycopene.  相似文献   

16.
Natural resource depletion, negative environmental effects and the challenge to secure global food security led to the establishment of the Sustainable Development Goals (SDGs). In need to explore underutilized sustainable protein sources, this study aims at isolating protein from cowpea by ultrasound-assisted extraction (UAE), where the techno-functional characteristics of the protein isolates were studied at different sonication conditions i.e., 100 W and 200 W at processing times ranging from 5 to 20 min. The US at 200 W-10 min produced the optimal results for all properties. In this process combination, there was an increase in protein yield, solubility, water-holding capacity, foaming capacity and stability, emulsion activity and stability, zeta-potential, and in-vitro protein digestibility from 31.78% to 58.96%, 57.26% to 68.85%, 3.06 g/g to 3.68 g/g 70.64% to 83.74%, 30.76% to 60.01%, 47.48% to 64.26%, 56.59% to 87.71%, –32.9 mV to −44.2 mV and 88.27% to 89.99%, respectively and particle size dropped from 763 nm to 559 nm in comparison to control. The microstructure and secondary-structure alterations of proteins caused by sonication were validated by SEM images, SDS-PAGE, and FTIR analyses. Sonication leads to acoustic cavitation and penetrate the cell walls, improving extraction from the solid to liquid phase. After sonication, the hydrophobic protein groups were exposed and proteins were partially denatured which increased its functionality. The findings demonstrated that UAE of cowpea protein improved yield, modify characteristics to fit the needs of the food industry, and contribute to achieving SDGs 2, 3, 7, 12, and 13.  相似文献   

17.
For the first time, purple corn pericarp (PCP) was converted to polyphenol-rich extract using two-pot ultrasound extraction technique. According to Plackett-Burman design (PBD), the significant extraction factors were ethanol concentration, extraction time, temperature, and ultrasonic amplitude that affected total anthocyanins (TAC), total phenolic content (TPC), and condensed tannins (CT). These parameters were further optimized using the Box-Behnken design (BBD) method for response surface methodology (RSM). The RSM showed a linear curvature for TAC and a quadratic curvature for TPC and CT with a lack of fit > 0.05. Under the optimum conditions (ethanol (50%, v/v), time (21 min), temperature (28 °C), and ultrasonic amplitude (50%)), a maximum TAC, TPC, and CT of 34.99 g cyanidin/kg, 121.26 g GAE/kg, and 260.59 of EE/kg, respectively were obtained with a desirability value 0.952. Comparing UAE to microwave extraction (MAE), it was found that although UAE had a lower extraction yield, TAC, TPC, and CT, the UAE gave a higher individual anthocyanin, flavonoid, phenolic acid profile, and antioxidant activity. The UAE took 21 min, whereas MAE took 30 min for maximum extraction. Regarding product qualities, UAE extract was superior, with a lower total color change (ΔE) and a higher chromaticity. Structural characterization using SEM showed that MAE extract had severe creases and ruptures, whereas UAE extract had less noticeable alterations and was attested by an optical profilometer. This shows that ultrasound, might be used to extract phenolics from PCP as it requires lesser time and improves phenolics, structure, and product qualities.  相似文献   

18.
Ultrasound-assisted extraction was evaluated as a simpler and more effective alternative to conventional extraction methods for the isolation of ginsenosides (saponins) from various types of ginseng. The ginseng samples were extracted with different solvents, under either direct sonication by an ultrasound probe horn or indirect sonication in an ultrasound cleaning bath. The ultrasonic extraction was compared with the conventional method of refluxing boiling solvents in a soxhlet extractor, on the yields of both the total saponin isolated by thin-layer chromatography and the individual ginsenosides by high performance liquid chromatography. It was found that the sonication-assisted extraction of ginseng saponins was about three times faster than the traditional extraction method. The ultrasonic extraction was not only more efficient but also convenient for the recovery and purification of the active ingredients of plant materials. In addition, the sonication-assisted extraction can be carried out at lower temperatures which are favorable for the thermally unstable compounds.  相似文献   

19.
A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography – diode array detector – mass spectroscopy (UPLC–DAD–MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm?2, temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene.  相似文献   

20.
The possibility to valorize peach juice waste, either frozen or air-dried, through microwave (MAE) and ultrasound assisted extraction (UAE) was evaluated. MAE power, UAE amplitude and time were optimized using a 22-factorial design. For frozen waste, optimal MAE (540 W, 50 s) and UAE (23%, 120 s) processes gave extracts presenting analogous content (on 100 g dry matter) of polyphenols (309–317 mg GAE), flavonoids (94–120 mg QE), anthocyanins (8–9 mg CGE), and similar antioxidant activity (2.1–2.2 mg TE). Extracts from dried waste resulted higher in polyphenols (630–670 mg GAE) but lower in flavonoids (75–90 mg QE), anthocyanins and vitamin C (not detectable). Although developing an energy density 2-fold higher than that of UAE, MAE more efficaciously extracted vitamin C (108 mg/100 g dm) and required half extraction time (50 s). MAE would also be less impactful than UAE in terms of greenhouse gas emission and energy requirements on industrial scale. The industrial valorization of peach waste through the application of microwave or ultrasound assisted extraction requires quantitative data, able to encourage company interest and investment. This study not only identifies optimal MAE and UAE parameters to assist the extraction of peach waste bioactive compounds but also provides a preliminary estimation of the potential economic and environmental impact on an industrial scale of these technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号