首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonstandard q-deformation Uq(son) of the universal enveloping algebra U(so n ) has irreducible finite dimensional representations which are a q-deformation of the well-known irreducible finite dimensional representations of U(so n ). But Uq(son) also has irreducible finite dimensional representations which have no classical analogue. The aim of this paper is to give these representations which are called nonclassical type representations. They are given by explicit formulas for operators of the representations corresponding to the generators of Uq(son).  相似文献   

2.
Nonstandard q-deformed algebras U q(so3) and U q(so4), which can be embedded into U q(sl3) and U q(sl4) and are coideals in them, are considered. It is shown how to multiply finite dimensional representations of U q(so3) when q is positive. Homomorphisms from U q(so3) and U q(so4) to the q-oscillator algebras are given. By making use of these homomorphisms, irreducible representations of U q(so3) and U q(so4) for q equal to a root of unity are obtained.  相似文献   

3.
In paper [*] (P. Moylan: Czech. J. Phys., Vol. 47 (1997), p. 1251) we gave an explicit embedding of the three dimensional Euclidean algebra (2) into a quantum structure associated with U q(so(2, 1)). We used this embedding to construct skew symmetric representations of (2) out of skew symmetric representations of U q(so(2, 1)). Here we consider generalizations of the results in [*] to a more complicated quantum group, which is of importance to physics. We consider U q(so(3, 2)), and we show that, for a particular representation, namely the Rac representation, many of the results in [*] carry over to this case. In particular, we construct representations of so(3, 2), P(2, 2), the Poincaré algebra in 2+2 dimensions, and the Poincaré algebra out of the Rac representation of U q(so(3, 2)). These results may be of interest to those working on exploiting representations of U q(so(3, 2)), like the Rac, as an example of kinematical confinement for particle constituents such as the quarks.  相似文献   

4.
The aim of this paper is to give a set of central elements of the algebras Uq(som) and U q(iso m ) when q is a root of unity. They are surprisingly arise from a single polynomial Casimir element of the algebra Uq(so3). It is conjectured that the Casimir elements of these algebras under any values of q (not only for q a root of unity) and the central elements for q a root of unity derived in this paper generate the centers of Uq(som) and U q(iso m ) when q is a root of unity.  相似文献   

5.
A nonstandard q-deformed Euclidean algebra U q(iso n ), based on the definition of the twisted q-deformed algebra U qson) (different from the Drinfeld–Jimbo algebra U q(so n )), is defined. Infinite dimensional representations R of U q(iso n ) are described. Explicit formulas for operators of these representations in the orthonormal basis are given. The spectra of the operators R(T n) corresponding to a q-analogue of the infinitesimal operator of shifts along the n-th axis are described. Contrary to the case of the classical Euclidean Lie algebra iso n , these spectra are discrete and spectral points have one point of accumulation.  相似文献   

6.
We characterize the finite-dimensional representations of the quantum affine algebra U q ( n+1) (whereq × is not a root of unity) which are irreducible as representations of U q (sl n+1). We call such representations small. In 1986, Jimbo defined a family of homomorphismsev a from U q (sl n+1) to (an enlargement of) U q (sl,n+1), depending on a parametera ·. A second family,ev a can be obtained by a small modification of Jimbo's formulas. We show that every small representation of U q ( n+1) is obtained by pulling back an irreducible representation of U q (sl n+1) byev a orev a for somea ·.  相似文献   

7.
We consider quantum deformations of the real symplectic (or anti-De Sitter) algebra sp(4), spin(3, 2) and of its singleton and (4-dimensional) zero-mass representations. For q a root of –1, these representations admit finite-dimensional unitary subrepresentations. It is pointed out that Uq (sp(4, )), unlike Uq (su(2, 2)), contains Uq (sl 2 ) as a quantum subalgebra.To Asim Barut, with all our friendship.  相似文献   

8.
The structure of all discrete series of unitary irreducible representations of the U q (u(3, 1)) and U q (u(n, 1)) noncompact quantum algebras are investigated with the aid of extremal projection operators and the q-analog of the Mickelsson-Zhelobenko algebra Z(g, g′) q . The orthonormal basis constructed in the infinite-dimensional space of irreducible representations of the U q (u(n, 1)) ⊇ U q (u(n)) algebra is the q-analog of the Gelfand-Graev basis in the space of the corresponding irreducible representations of the u(n, 1) ⊇ u(n) classical algebra.  相似文献   

9.
Operators of representations corresponding to symmetric elements of theq-deformed algebrasU q (su1,1),U q (so2,1),U q (so3,1),U q (so n ) and representable by Jacobi matrices are studied. Closures of unbounded symmetric operators of representations of the algebrasU q (su1,1) andU q (so2,1) are not selfadjoint operators. For representations of the discrete series their deficiency indices are (1,1). Bounded symmetric operators of these representations are trace class operators or have continuous simple spectra. Eigenvectors of some operators of representations are evaluated explicitly. Coefficients of transition to eigenvectors (overlap coefficients) are given in terms ofq-orthogonal polynomials. It is shown how results on eigenvectors and overlap coefficients can be used for obtaining new results in representation theory ofq-deformed algebras.  相似文献   

10.
We give the Heisenberg realization for the quantum algebra U q (sl n ), which is written by theq-difference operator on the flag manifold. We construct it from the action of U q (sl n ) on theq-symmetric algebraA q (Mat n ) by the Borel-Weil-like approach. Our realization is applicable to the construction of the free field realization for U q [2].  相似文献   

11.
We consider the problem of constructing a cyclicL-operator associated with a 3-stateR-matrix related to theU q (sl(3)) algebra atq N =1. This problem is reduced to the construction of a cyclic (i.e. with no highest weight vector) representation of some twelve generating element algebra, which generalizes theU q (sl(3)) algebra. We found such representation acting inC N C N C N . The necessary conditions of the existence of the intertwining operator for two representations are also discussed.  相似文献   

12.
We obtain positive-energy irreducible representations of theq-deformed anti de Sitter algebraU q (so(3, 2)) by deformation of the classical ones. When the deformation parameterq isN-th root of unity, all these irreducible representations become unitary and finite-dimensional. Generically, their dimensions are smaller than those of the corresponding finite-dimensional non-unitary representations ofso(3, 2). We discuss in detail the singleton representations, i.e. the Di and Rac. WhenN is odd, the Di has dimension 1/2(N 2–1) and the Rac has dimension 1/2(N 2+1), while ifN is even, both the Di and Rac have dimension 1/2N 2. These dimensions are classical only forN=3 when the Di and Rac are deformations of the two fundamental non-unitary representations ofso(3, 2).Presented at the 4th Colloquium Quantum groups and integrable systems, Prague, 22–24 June 1995.On leave from Bulgarian Acad. Sci., Institute of Nuclear Research and Nuclear Energy, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria.On leave from Pennsylvania State University (Fulbright scholar).  相似文献   

13.
14.
Abstract

Studied in this paper are real forms of the quantum algebra U q(sl(3)). Integrable operator representations of ?-algebras are defined. Irreducible representations are classified up to a unitary equivalence.  相似文献   

15.
An analog of the minimal unitary series representations for the deformed Virasoro algebra is constructed using vertex operators of the quantum affine algebra Uq(sl2). A similar construction is proposed for the elliptic algebra Aq,p(sl2).  相似文献   

16.
Irreducible representations of the algebrasU′ q(so n ) forq a root of unityq p=1 are given. The main class of these representations act onp N-dimensional linear space (whereN is a number of positive roots of the Lie algebra so n ) and are given byr = dim so n complex parameters. Some classes of degenerate irreducible representations are also described. Presented at the 9th Colloquium “Quantum Groups and Integrable Systems”, Prague, 22–24 June 2000. The research described in this publication was made possible in part by Grant UP1-2115 of the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union (CRDF).  相似文献   

17.
When the deformation parameter is a root of unity, the centre of a quantum group can be described by a set of generators and non trivial relations. In the case ofU q (sl(N)), these relations simply derive from the expressions of the deformed Casimir operators. In the case ofU q (osp(1|2)), the relation is simple if we use an operator which anticommutes with the fermionic generators and whose square is the quadratic Casimir. This operator also simplifies the classification of finite dimensional irreducible representations. In the case ofU q (sl(1|2)), the relations derive from the (infinite set of) standard Casimir operators.Presented at the 5th International Colloquium on Quantum Groups: Quantum Groups and Integrable Systems, Prague, 20–22 June 1996.  相似文献   

18.
We describe properties of the nonstandardq-deformationU q /′ (so n ) of the universal enveloping algebraU(so n ) of the Lie algebra so n which does not coincide with the Drinfeld-Jimbo quantum algebraU q(so n ) and is important for quantum gravity. Many unsolved problems are formulated. Some of these problems are solved in special cases. The research of this paper was made possible in part by Award UP1-2115 of U.S. Civilian Research and Development Foundation. Presented at DI-CRM Workshop held in Prague, 18–21 June 2000.  相似文献   

19.
We study representations of the mapping class group of the punctured torus on the double of a finite dimensional possibly non-semisimple Hopf algebra that arise in the construction of universal, extended topological field theories. We discuss how for doubles the degeneracy problem of TQFT's is circumvented. We find compact formulae for theS ±1-matrices using the canonical, non-degenerate forms of Hopf algebras and the bicrossed structure of doubles rather than monodromy matrices. A rigorous proof of the modular relations and the computation of the projective phases is supplied using Radford's relations between the canonical forms and the moduli of integrals. We analyze the projectiveSL(2, Z)-action on the center ofU q(sl2) forq anl=2m+1st root of unity. It appears that the 3m+1-dimensional representation decomposes into anm+1-dimensional finite representation and a2m-dimensional, irreducible representation. The latter is the tensor product of the two dimensional, standard representation ofSL(2, Z) and the finite,m-dimensional representation, obtained from the truncated TQFT of the semisimplified representation category ofU q(sl2).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号