首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 2 毫秒
1.
The present paper focuses on the structural stability of long uniformly pressurized thin elastic tubular shells subjected to in-plane bending. Using a special-purpose non-linear finite element technique, bifurcation on the pre-buckling ovalization equilibrium path is detected, and the post-buckling path is traced. Furthermore, the influence of pressure (internal and/or external) as well as the effects of radius-to-thickness ratio, initial curvature and initial ovality on the bifurcation moment, curvature and the corresponding wavelength, are examined. The local character of buckling in the circumferential direction is also demonstrated, especially for thin-walled tubes. This observation motivates the development of a simplified analytical formulation for tube bifurcation, which considers the presence of pressure, initial curvature and ovality, and results in closed-form expressions of very good accuracy, for tubes with relatively small initial curvature. Finally, aspects of tube bifurcation are illustrated using a simple mechanical model, which considers the ovalized pre-buckling state and the effects of pressure.  相似文献   

2.
The effect of length scale on buckling behavior of a single-layer graphene sheet embedded in a Pasternak elastic medium is investigated using a nonlocal Mindlin plate theory. An explicit solution is extracted for the buckling loads of graphene sheet and the influence of the nonlocal parameter and aspect ratio on dimensionless buckling loads is presented. It is found that the nonlocal assumptions exhibit larger buckling loads and stiffness of elastic medium in comparison to classical plate theory.  相似文献   

3.
Systems consisting of a hard layer resting on an elastic graded soft substrate are frequently encountered both in nature and industry. In this paper, we study the surface wrinkling problem of such a composite system subjected to in-plane compression. The Young’s modulus of the elastic substrate is assumed to vary along its depth direction. In particular, we investigate two typical variations in the modulus, described by a power function and an exponential function, respectively. Analytical solutions which permit to determine the critical compressive strain for the onset of wrinkling and the wrinkling wavelength are derived. A series of finite element simulations are performed to validate the theoretical solutions and demonstrate the prominent features of the postbuckling evolution of the system. The results may not only find applications in thin-film metrology and surface patterning but also provide insight into the wrinkling phenomena of various living tissues.  相似文献   

4.
A compressed elastic film on a compliant substrate can form wrinkles. On an elastic substrate, equilibrium and energetics set the critical condition and select the wrinkle wavelength and amplitude. On a viscous substrate, wrinkle grows over time and the kinetics selects the fastest growing wavelength. More generally, on a viscoelastic substrate, both energetics and kinetics play important roles in determining the critical condition, the growth rate, and the wavelength. This paper studies the wrinkling process of an elastic film on a viscoelastic layer, which in turn lies on a rigid substrate. The film is elastic and modeled by the nonlinear von Karman plate theory. The substrate is linear viscoelastic with a relaxation modulus typical of a cross-linked polymer. Beyond a critical stress, the film wrinkles by the out-of-plane displacement but remains bonded to the substrate. This study considers plane strain wrinkling and neglects the in-plane displacement. A classification of the wrinkling behavior is made based on the critical conditions at the elastic limits, the glassy and rubbery states of the viscoelastic substrate. Linear perturbation analyses are conducted to reveal the kinetics of wrinkling in films subjected to intermediate and large compressive stresses. It is shown that, depending on the stress level, the growth of wrinkles at the initial stage can be exponential, accelerating, linear, or decelerating. In all cases, the wrinkle amplitude saturates at an equilibrium state after a long time. Subsequently, both amplitude and wavelength of the wrinkle evolve, but the process is kinetically constrained and slow compared to the initial growth.  相似文献   

5.
Surface effects on the persistence length of quasi-one-dimensional nanomaterials are investigated by using the theory of surface elasticity and the core–shell model of nanobeams. A simple and unified expression is provided to determine the persistence length of nanowires and nanotubes with any regular polygonal cross-sections. It is demonstrated that surface effects have a distinct influence on the persistence length when the characteristic sizes of materials shrink to nanometers. This work is helpful not only for understanding the size-dependent behavior of nanomaterials but also for the design of devices based on nanotubes or nanowires.  相似文献   

6.
A load moving on the surface of an elastic halfspace forms a basic problem that is related to different fields of engineering, such as the subsoil response due to vehicle motion or the ultrasound field due to an angle beam transducer. Many numerical techniques have been developed to solve this problem, but these do not provide the fundamental physical insights that are offered by closed form solutions, which are very rare in comparison. This paper describes the development and analysis of the closed form space-time domain solution for a knife-edge load, i.e. a line segment of normal traction, moving at a constant speed on the surface of an elastic halfspace. The various contributions making up the exact solution, obtained with the Cagniard-De Hoop method, produce all the complicated wave patterns from this distributed type of loading. Examples are the transient wave field at the starting position of the load, angled conical and plane waves propagating into the solid, Rayleigh waves propagating along the surface, and head waves spreading and attenuating in specific directions from the loading path. The influence of the load speed on the wave field is investigated by considering the singularities in the relevant complex domains, for each sonic range relative to the bulk wave velocities. The characteristic wave fronts and wave patterns as exhibited by the particle displacements are evaluated for subsonic, transonic and supersonic load speeds.  相似文献   

7.
《力学快报》2020,10(1):57-65
In this research, the tensile properties' performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method and micromechanical models. These investigations were used to verify the tensile properties models toward the effect of fibre length and volume fraction on the composites. The experimental results showed that the tensile properties of composites had significantly increased due to the enhancement of fibre length. On the contrary, a decline in the tensile properties was observed with the increase of volume fraction. A comparison was made between the available experimental results and the performances of Tsai-Pagano, Christensen and Cox-Krechel models in their prediction of composites elastic modulus. The results showed that the consideration of fibre's elastic anisotropy in the Cox-Krenchel model had yielded a good prediction of the composites modulus, nevertheless the models could not accurately predict the composites modulus for fibre length study.  相似文献   

8.
On the basis of von Kárman equations,the axisymmetric buckling and post-bucklingof annular plates on anelastic foundation is(?)tematically discussed byusing shootingmethods.  相似文献   

9.
Summary  The steady-state response of an elastic beam on a visco-elastic layer to a uniformly moving constant load is investigated. As a method of investigation the concept of “equivalent stiffness” of the layer is used. According to this concept, the layer is replaced by a 1D continuous foundation with a complex stiffness, which depends on the frequency and the wave number of the bending waves in the beam. This stiffness is analyzed as a function of the phase velocity of the waves. It is shown that the real part of the stiffness decreases severely as the phase velocity tends to a critical value, a value determined by the lowest dispersion branch of the layer. As the phase velocity exceeds the critical value, the imaginary part of the equivalent stiffness grows substantially. The dispersion relation for bending waves in the beam is studied to analyze the effect of the layer depth on the critical (resonance) velocity of the load. It is shown that the critical velocity is in the order of the Rayleigh wave velocity. The smaller the layer depth, the higher the critical velocity. The effect of viscosity in the layer on the resonance vibrations is studied. It is shown that the deeper the layer, the smaller this effect. Received 22 March 1999; accepted 26 July 1999  相似文献   

10.
尤玥 《力学与实践》2009,31(3):78-79
围绕圆轮的皮带在达到临界状态前外载增加或降低过程中,局部静摩擦力会发生大小和方向的改变. 皮带任一点处内力变化可以沿指数曲线增加或减小,取决于加载历史. 皮带本身是线弹性材料,但变形与力之间是非线性关系,且加载与卸载过程不同,形成滞回圈.滞回圈内每一点都是皮带可能出现的载荷和变形状态.  相似文献   

11.
不确定性移动载荷激励下的弹性梁振动是土木、机械和航空航天等工程领域普遍存在的一类重要问题。在许多实际工程中,不确定移动载荷的样本测试数据有限或测试成本较高,本文引入区间过程模型对此类动态不确定性参数进行描述,提出了一种求解不确定移动载荷激励下弹性梁振动响应边界的非随机振动分析方法。首先,介绍了确定性移动载荷激励下弹性梁的振动微分方程及其解析求解方法;其次,引入区间过程模型,以上下边界函数的形式对不确定性移动载荷进行度量,进而基于模态叠加法发展出弹性梁振动响应边界求解的非随机振动分析方法;最后,将上述非随机振动分析方法应用于车桥耦合振动问题。  相似文献   

12.
In the first part of this paper we study the effect of damping on the multiple steady state deformations of an infinite beam resting on a tensionless foundation and under a point load moving with a sub-critical speed. Due to the non-linear characteristics of the problem, a guess on the deformed shape has to be made before a numerical search can be initiated. It is found that when the damping is present, all the steady state solutions are asymmetric. As the damping approaches zero, some of the steady state solutions become symmetric, while some others remain asymmetric. In the second part of the paper we propose to test the stability of these steady state deformations by a transient analysis on a long finite beam. Our numerical experiment indicates that among all these multiple steady state solutions only one of them is stable. This stable steady state deformation reduces to a symmetric solution when the damping approaches zero. Furthermore, it is found that this stable solution is also the one among all steady state solutions closest in shape to the linear solution based on a bilateral foundation model.  相似文献   

13.
In this work, we study the nonlinear oscillations of mechanical systems resting on a (unilateral) elastic substrate reacting in compression only. We consider both semi-infinite cables and semi-infinite beams, subject to a constant distributed load and to a harmonic displacement applied to the finite boundary. Due to the nonlinearity of the substrate, the problem falls in the realm of free-boundary problems, because the position of the points where the system detaches from the substrate, called Touch Down Points (TDP), is not known in advance. By an appropriate change of variables, the problem is transformed into a fixed-boundary problem, which is successively approached by a perturbative expansion method. In order to detect the main mechanical phenomenon, terms up to the second order have to be considered. Two different regimes have been identified in the behaviour of the system, one below (called subcritical) and one above (called supercritical) a certain critical excitation frequency. In the latter, energy is lost by radiation at infinity, while in the former this phenomenon does not occur and various resonances are observed instead; their number depends on the statical configuration around which the system performs nonlinear oscillations.  相似文献   

14.
多孔功能梯度材料(FGM)构件的特性与孔隙率和孔隙分布形式有密切关系。本文基于经典板理论,考虑不同孔隙分布形式时修正的混合率模型,研究Winkler弹性地基上四边受压多孔FGM矩形板的自由振动与临界屈曲载荷特性。首先利用Hamilton原理和物理中面的定义推导Winkler弹性地基上四边受压多孔FGM矩形板自由振动的控制微分方程并进行无量纲化,然后应用微分变换法(DTM)对无量纲控制微分方程和边界条件进行变换,得到计算无量纲固有频率和临界屈曲载荷的代数特征方程。将问题退化为孔隙率为零时的FGM矩形板并与已有文献进行对比以验证其有效性。最后计算并分析了梯度指数、孔隙率、地基刚度系数、长宽比、四边受压载荷及边界条件对多孔FGM矩形板无量纲固有频率的影响以及各参数对无量纲临界屈曲载荷的影响。  相似文献   

15.
工程结构的随机特征问题研究及其在梁结构中的应用   总被引:4,自引:0,他引:4  
采用子结构模态综合和摄动随机有限元相结合求解工程结构的随机特征问题。为求出随机特征对的方差,借助于模态截断概念推出诸特征值与特征向量对随机变量的偏导数。以染结构为典型算法,定量研究了子结构动模态的选取个数与随机特征对的计算精度间关系,以梁的长细比首次确定使用Timoshenko梁和Euler-Bernoulli梁两模型求解梁类工程结构随机特征问题的适用范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号