首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Point defects on the metallic atomic wires induced by Au adsorbates on vicinal Si surfaces were investigated using scanning tunneling microscopy and spectroscopy (STM and STS). High-resolution STM images revealed that there exist several different types of defects on the Si(5 5 7)–Au surface, which are categorized by their apparent bias-dependent images and compared to the previous report on Si(5 5 3)–Au [Phys. Rev. B (2007) 205325]. The chemical characteristics of these defects were investigated by monitoring them upon the variation of the Au coverage and the adsorption of water molecules. The chemical origins and the tentative atomic structures of the defects are suggested as Si adatoms (and dimers) in different registries, the Au deficiency on terraces, and water molecules adsorbed dissociatively on step edges, respectively. STS measurements disclosed the electronic property of the majority kinds of defects on both Si(5 5 7)–Au and Si(5 5 3)–Au surfaces. In particular, the dominating water-induced defects on both surfaces induce a substantial band gap of about 0.5 eV in clear contrast to Si adatom-type defects. The conduction channels along the metallic step-edge chains thus must be very susceptible to the contamination through the electronic termination by the water adsorption.  相似文献   

2.
In this work ultrathin iron silicide epilayers were obtained by the reaction of iron contaminants with the Si(1 1 1) substrate atoms during high-temperature flash. After repeated flashing at about 1125 °C, reflection high-energy electron diffraction indicated silicide formation. Scanning tunneling microscopy revealed highly ordered surface superstructure interrupted, however, by a number of extended defects. Atomic-resolution bias-dependent imaging demonstrated a complex nature of this superstructure with double-hexagonal symmetry and (2√3×2√3)-R30° periodicity. Among the possible candidate phases, including metastable FeSi2 with a CaF2 structure and FeSi1+x with a CsCl structure, the best match of the interatomic distances to the measured 14.4 Å × 14.4 Å unit cell dimensions pointed to the hexagonal Fe2Si (Fe2Si prototype) high-temperature phase. The fact that this phase was obtained by an unusually high-temperature flash, and that neither its reconstruction nor its semiconducting band-gap of about 1.0 ± 0.2 eV (as deduced form the I-V curves obtained by scanning tunneling spectroscopy) has ever been reported, supports such identification. Due to its semiconducting properties, this phase may attract interest, perhaps as an alternative to β-FeSi2.  相似文献   

3.
Two different growth modes of manganese silicide are observed on Si(1 0 0) with scanning tunneling microscopy. 1.0 and 1.5 monolayer Mn are deposited at room temperature on the Si(1 0 0)-(2 × 1) substrate. The as-grown Mn film is unstructured. Annealing temperatures between room temperature and 450 °C lead to small unstructured clusters of Mn or MnxSiy. Upon annealing at 450 °C and 480 °C, Mn reacts chemically with the Si substrate and forms silicide islands. The dimer rows of the substrate become visible again. Two distinct island shapes are found and identified as MnSi and Mn5Si3.  相似文献   

4.
Injection of tunneling electrons and holes from the probe tips of a scanning tunneling microscope was found to enhance the hopping motion of Cl atoms between neighboring dangling-bond sites of Si dimers on Si(1 0 0)-(2 × 1) surfaces, featured by the rate of hopping linearly dependent on the injection current. The hopping rate formed peaks at sample biases of VS∼+1.25 and −0.85 V, which agree with the peaks in the local density of states spectrum measured by scanning tunneling spectroscopy. The Cl hopping was enhanced at Cl-adsorbed sites even remote from the injection point. The Cl hopping by hole injection was more efficiently enhanced by sweeping the tip along the Si dimer row than by tip-sweeping along the perpendicular direction. Such anisotropy, on the other hand, was insignificant in the electron injection case. All of these findings can be interpreted by the model that the holes injected primarily into a surface band originated from the dangling bonds of Si dimers propagate quite anisotropically along the surface, and become localized at Cl sites somehow to destabilize the Si-Cl bonds causing hopping of the Cl atoms. The electrons injected into a bulk band propagate in an isotropic manner and then get resonantly trapped at Si-Cl antibonding orbitals, resulting in bond destabilization and hopping of the Cl atoms.  相似文献   

5.
We have investigated the growth of nanometer-scale gold stripes on reconstructed Au(1 1 1) surface using scanning tunneling microscopy (STM). The experiment was carried out under the conditions of ultrahigh vacuum and room temperature. The stripes were grown by the scanning motion of the STM tip over the area containing more than one step edge with the tunnel resistance less than several tens of mega ohms (MΩs). Unlike the previous reports [J.C. Heyraud, J.J. Metoris, Surf. Sci. 100 (1989) 519; V.M. Hallmark, S. Chiang, J.F. Rabolt, J.D. Swalen, R.J. Wilson, Phys. Rev. Lett. 59 (1987) 2879], we found, by directly comparing the direction of the stripes and the orientation of the underlying lattice, that the gold stripes grow preferentially along [1,−1,0] direction and its threefold symmetric directions at (1 1 1) surface of fcc structure. We also found that the scanning direction of the STM tip does not affect the direction of the stripe growth although the growth rate is suppressed remarkably when the scanning direction is close to [1,1,−2] direction of Au(1 1 1) surface.  相似文献   

6.
The Si(0 0 1) surface morphology during ion sputtering at elevated temperatures and solid phase epitaxy (SPE) following ion sputtering at room temperature has been investigated using scanning tunneling microscopy. Two types of antiphase boundaries form on Si(0 0 1) surfaces during ion sputtering and SPE. One type of antiphase boundary, the AP2 antiphase boundary, contributes to the surface roughening. AP2 antiphase boundaries are stable up to 700 °C, and ion sputtering and SPE performed at 700 °C result in atomically flat Si(0 0 1) surfaces.  相似文献   

7.
Basing on the results of the scanning tunneling microscopy (STM) observations and density functional theory (DFT) calculations, the structural model for the Cu magic clusters formed on Si(1 1 1)7 × 7 surface has been proposed. Using STM, composition of the Cu magic clusters has been evaluated from the quantitative analysis of the Cu and Si mass transport occurring during magic cluster converting into the Si(1 1 1)‘5.5 × 5.5’-Cu reconstruction upon annealing. Evaluation yields that Cu magic cluster accommodates 20 Cu atoms with 20 Si atoms being expelled from the corresponding 7 × 7 half unit cell (HUC). In order to fit these values, it has been suggested that the Cu magic clusters resemble fragments of the Cu2Si-silicide monolayer incorporated into the rest-atom layer of the Si(1 1 1)7 × 7 HUCs. Using DFT calculations, stability of the nineteen models has been tested of which five models appeared to have formation energies lower than that of the original Si(1 1 1)7 × 7 surface. The three of five models having the lowest formation energies have been concluded to be the most plausible ones. They resemble well the evaluated composition and their counterparts are found in the experimental STM images.  相似文献   

8.
We have performed a detailed study of the formation and the atomic structure of a √3 × √3 surface on Si/Ge(1 1 1) using both scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). Both experimental methods confirm the presence of a √3 × √3 periodicity but unlike the Sn/Ge(1 1 1) and the Sn/Si(1 1 1) surfaces, the Si/Ge(1 1 1) surface is not well ordered. There is no long range order on the surface and the √3 × √3 reconstruction is made up of double rows of silicon atoms separated by disordered areas composed of germanium atoms.  相似文献   

9.
We have studied Si(0 0 1)-Ga surface structures formed at Ga coverages of slightly above 0.50 monolayer (ML) at 250 °C by scanning tunneling microscopy (STM). 4 × 2-, 5 × 2-, and 6 × 2-Ga structures were observed in a local area on the surface. The 4 × 2-Ga structure consists of three protrusions, as observed in filled- and empty-state STM images. The characters of these structures are clearly different from those of other Si(0 0 1)-Ga structures. We also performed an ab initio calculation of the energetics for several possible models for the 4 × 2-Ga structure, and clarified that the three-orthogonal-Ga-dimer model is the most stable. Also, the results of comparing the simulated STM images and observation images at various bias voltages indicate that this structural model is the most favorable.  相似文献   

10.
The ultra-high vacuum scanning tunneling microscope (UHV-STM) was used to investigate the addition of the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radical to the Si(1 0 0) surface. Room temperature studies performed on clean Si(1 0 0)-2 × 1 confirm the proposed binding of the unpaired valence electron associated with the singly occupied molecular orbital (SOMO) of the molecule with a Si dangling bond. A strong bias dependence in the topography of isolated molecules was observed in the range of −2.0 to +2.5 V. Semiempirical and density functional calculations of TEMPO bound to a three-dimer silicon cluster model yield occupied state density isosurfaces below the highest occupied (HOMO) and unoccupied state densities isosurfaces above the lowest unoccupied molecular orbital (LUMO) which trend in qualitative agreement with the bias dependent STM topography. Furthermore, the placement of TEMPO molecules on dangling bonds was controlled with atomic precision on the monohydride Si(1 0 0) surface via electron stimulated desorption of H, demonstrating the compatibility of nitroxyl free radical binding chemistries with nanopatterning techniques such as feedback controlled lithography.  相似文献   

11.
J.H.G. Owen  D.R. Bowler   《Surface science》2009,603(18):2902-2906
We discuss the interaction between adsorbing ammonia molecules and pre-adsorbed ammonia fragments on the Si(0 0 1) surface, searching for experimental evidence of a H-bonded precursor state predicted by modelling. While correlations along dimer rows have already been identified, these mix substrate-mediated effects due to dimer buckling with ammonia–adsorbate effects. Correlations between fragments on neighbouring dimer rows are not affected by substrate effects (in this system), allowing an analysis of direct ammonia–adsorbate effects. We present an analysis of cross-row correlations in existing high-coverage STM data which shows significant correlations between NH2 groups on neighbouring dimer rows over a significant range, providing evidence for the H-bonded precursor state with a range of around 10 Å. We discuss implications for the interpretation of STM images of ammonia on Si(0 0 1).  相似文献   

12.
The couple sulfonato/Si(1 1 1)-7 × 7 leads to remarkable 2D chiral molecular assembly with a stability improved at room temperature. The voltage-dependency of the STM images has been experimentally investigated and the correlation between STM images and PDOS has been studied. The proposed empirical model of the adsorption of molecules on Si(1 1 1)-7 × 7 has been justified by the experimental and theoretical data.  相似文献   

13.
Using scanning tunneling microscopy (STM), it has been found that the reconstruction of Si(1 1 4) is transformed irreversibly from a 2 × 1 structure composed of dimer (D), rebonded atom (R), and tetramer (T) rows (phase A) to a different kind of 2 × 1 structure composed of D, T, and T rows (phase B) by C incorporation. It has been confirmed by high-resolution synchrotron core-level photoemission spectroscopy (PES) that such an irreversible structural transformation is due to stable subsurface C atoms. They induce anisotropic compressive stress on the surface, which results in insertion of Si dimers to an R row to form a T row.  相似文献   

14.
The surface atomic structure of Bi on Au(1 1 1) is studied with scanning tunneling microscopy. At about 0.5 monolayer of Bi, a well-ordered 6 × 6 atomic structure is observed. The structure has three notable features: corner holes, Bi adatoms, and stacking faults, very similar to a semiconductor surface of Si(1 1 1)-7 × 7. Out of 18 Bi surface atoms in a unit cell, six atoms are at hollow sites and are adatoms, and another six atoms are near-bridge sites. The last six atoms surround corner holes and are lower than other surface atoms by about 0.2 Å. A possible atomic model is proposed based on our observation.  相似文献   

15.
Nucleation of 2D islands in Si/Si(1 1 1)-7 × 7 molecular beam epitaxy is studied using scanning tunneling microscopy (STM). A detailed analysis of the population of small amorphous clusters coexisting on the surface with epitaxial 2D islands has been performed. It is shown that small clusters tend to form pairs. The pairs serve as precursors for 2D islands as confirmed by direct STM observations of the smallest 2D islands covering two adjacent half-unit cells of the 7 × 7 reconstruction. It is proved with scaling arguments that the critical nucleus for 2D island formation consists not only of the pair itself, but also includes additional adatoms not belonging to the stable clusters.  相似文献   

16.
Formation of the platinum silicides nanostructures and their electronic properties have been studied using scanning tunneling microscopy and scanning tunneling spectroscopy. The investigated structures have been grown by solid state epitaxy upon deposition of the Si atoms (coverage about 0.2 ML) and sequential annealing at temperature range 600-1170 K. The formation of the Pt2Si and PtSi islands was investigated until the Si atoms embedded into the Pt substrate at the 1170 K. The images of the silicides structures and Pt substrates with atomic resolution have been recorded. The evolution of the spectroscopic curves both for substrates and nanostructures, corresponding to the structural and sizes changes, have been shown.  相似文献   

17.
We investigated desorption of chlorine atoms on Si (1 1 1)-(7 × 7) surfaces induced by hole injection from scanning tunneling microscope tips. The hole-induced desorption of chlorine atoms had a threshold bias voltage corresponding to the energy position of the S3 surface band originated in Si backbonds. The chlorine atom desorption rate was almost proportional to the square of the tunneling current. We have discussed possible mechanisms that two holes injected into Si surface states get localized at the backbonds of chlorinated Si adatoms, which induces the rupture of Cl-Si bonds to result in chlorine atom desorption.  相似文献   

18.
Bulk carbon impurities segregate at the Fe(1 0 0) surface and, upon thermal annealing, can form metastable surface phases with local and long range order and peculiar electronic properties. We present a surface science study of C-segregated Fe(1 0 0) with scanning tunneling microscopy, angle resolved photoemission, and ab initio calculations of the surface structure and electron states. In particular the c(3√2 × √2) structure, observed for 0.67 atomic layers of C segregated at the iron surface, is found to be due to self-organized carbon stripes made of zig-zag chains. The strong hybridization between C and Fe was observed in ARPES spectra.  相似文献   

19.
Based on the results of scanning tunneling microscopy studies of the reconstructed Si(5 5 12)-2 × 1 surface, its atomic structure has been found. It turns out that Si(5 5 12)-2 × 1 consists of four one-dimensional structures: honeycomb (H) chain, π-bonded H′ (π) chain, dimer-adatom (D/A) row, and tetramer (T) row. Its period is composed of three subunits, i.e., (i) (3 3 7) unit with a D/A row [D(3 3 7)], (ii) (3 3 7) unit with a T row [T(3 3 7)], and (iii) (2 2 5) unit with both a D/A and a T row. Two kinds of adjacent subunits, T(3 3 7)/D(3 3 7) and D(3 3 7)/(2 2 5), are divided by H chains with 2× periodicity due to buckling, while one kind of adjacent subunits, T(3 3 7)/(2 2 5), is divided by a π chain with 1× periodicity. Two chain structures, H and π chains, commute with each other depending upon the external stresses perpendicular to the chain, which is the same for two row structures, D/A and T rows. It can be concluded that the wide and planar reconstruction of Si(5 5 12)-2 × 1 is originates from the stress balance among two commutable chains and two commutable rows.  相似文献   

20.
The surface reconstruction of epitaxial Ge layer on Si(100) was studied with ultrahigh vacuum scanning tunneling microscopy. The surface with 0.8 ML Ge grown in the presence of a hydrogen surfactant reveals the same structures as found in chemical-vapor-deposited Ge on Si(100): (i) defective (2×1) structure at 290°C, (ii) irregular (2×N) in Ge layer and defective (2×1) in bare Si regions at 420°C, and (iii) (2×N) in Ge-covered regions and c(4×4) in bare Si regions at 570°C. The morphology of step edges does not change with temperature, implying that the c(4×4) reconstruction is anisotropic in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号