首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(17):2155-2172
Abstract

A rapid quantitative gas-liquid chromatographic procedure for the determination of 2-diphenylmethoxy-N, N-dimethylethanamine (diphenhydramine, dimedrol) hydrochloride, in pure form and when it is dispensed in eye drops and lotion, is described. The antihistaminic drug requires no conversion to the free base, and the assayed pharmaceutical formulations need no sample cleanup, preliminary drug separation or derivatization. The method is adopted for a concentration range varied between1.0 - 10 mg.ml?1 of the drug in ethanolic solutions. The accuracy obtained was 98.6 ± 0.31%, 93.3 ± 0.82%, and 87.9 ± 1.1% for the authentic diphenhydramine hydrochloride, its eye drops and its lotion. The 50% - addition of the drug to the labelled claim in the galenical forms, eye drops and lotion, gives average mean recoveries of 100.8 ± 0.74% and 97.9 ± 0.45% respectively.  相似文献   

2.
Pioglitazone Hydrochloride (PG) is an insulin-sensitizing drug and is indicated for the treatment of type II diabetes. In this study, newly molecularly imprinted electrochemical sensors were constructed for the potentiometric determination of PG in the pharmaceutical formulations (Diabetonorm® 45 and 15 mg) with high accuracy and precision. The MIP particles (ionophore) were prepared by using the PG drug as a template, acrylamide (AC) or methacrylic acid (MAA) as a functional monomer, and ethylene glycol dimthacrylate (EGDMA) as a cross-linker. The best MIP was synthesized from AC as a functional monomer, AC-MIP. The best sensor (CPEs) was formulated from graphite (47 wt%) as a carbon source, AC-MIP (5 wt.%) as an ionophore, PMA (1 wt%) as an ion-exchanger, DNPOE (47 wt.%) as a conductive oil so-called plasticizer. The best CPE electrode exhibited response slope to the Nernstian slope of 63.0 mV Decade−1, linear dynamic range of 10−8–10−4 M with the detection limit of 1.0×10−8 M, along with high reversibility, short response time 30 sec, and a long lifetime. The constructed biosensors showed high selectivity against similar interfering species (e. g. arabinose, galactose, lactose, maltose, glucose, Ba2+, Cu2+, Na+, Zn2+, Mg2+, Fe2+, Ca2+, NH4+).  相似文献   

3.
Amr L. Saber 《Electroanalysis》2010,22(24):2997-3002
Simple, selective and accurate sensors were developed for the determination of melatonin and oxomemazine in biological samples (urine) and in pharmaceutical preparations. Potentiometric measurements were based on bismus tetraiodate‐drug ion‐pair as novel electroactive materials incorporating a plasticized PVC membrane with o‐nitrophenyl octyl ether or dioctyl phthalate. Each sensor was conditioned for at least two days in 0.1 M drug solution before use. It exhibited fast and stable Nernstian response for melatonin and oxomemazine over the concentration range of 1.0×10?6–1.0×10?2 M and 1.0×10?5–1.0×10?2 M, pH range of 3.0–6.5 and 3.5–6.0 for melatonin and oxomemazine sensors, respectively. Results with an average recovery not more than 101 % and a mean standard deviation less than 1.0 % of the nominal were obtained for the four sensors. The sensors showed reasonable selectivity towards investigated drugs in presence of many cations.  相似文献   

4.
A simple, rapid, and accurate HPLC method is described for the determination of ritodrine hydrochloride (RTH) in both pure form and pharmaceutical formulations. A Hypersil Shendon ODS column with a mobile phase of dibasic phosphate buffer and acetonitrile (75 : 25) and isoxsuprine hydrochloride were used as an internal standard. The flow rate was 1 mL min–1 and the effluent was monitored at 270 nm pH 4.0. The calibration graph is linear in the range 2–30 g mL–1. The proposed HPLC method has been successfully employed for the determination of RTH in Yutopar tablets and injection solutions.  相似文献   

5.
《Analytical letters》2012,45(7):1144-1157
Abstract

The fabrication and analytical applications of two types of potentiometric sensors for the determination of ketoconazole (KET) are described. The sensors are based on the use of KET-molybdophosphoric acid (MPA) ion pair as electroactive material. The fabricated sensors include both polymer membrane and carbon paste electrodes. Both sensors showed a linear, stable and near Nernstian slope of 57.8 mV/decade and 55.2 mV/decade for PVC membrane and carbon paste sensors respectively over a relatively wide range of KET concentration (1 × 10?2 ? 5 × 10?5and 1 × 10?2 ? 1 × 10?6). The sensors showed a fast response time of < 30 sec and < 45 sec. A useful pH range of 3–6 was obtained for both types of sensors. A detection limit of 2.96 × 10?5M was obtained for PVC membrane sensor and 6.91 × 10?6 M was obtained for carbon paste sensor. The proposed sensors proved to have a good selectivity for KET with respect to a large number of ions. The proposed sensors were successfully applied for the determination of KET in pharmaceutical formulations. The results obtained are in good agreement with the values obtained by the standard method.  相似文献   

6.
《Analytical letters》2012,45(12):2607-2617
Abstract

A very simple, automatic, fast method for the photometric determination of bromhexine hydrochloride based on the application of kinetic methodology and the stopped-flow mixing technique to the coupling reaction between the diazotized bromhexine derivative and N-(1-naphthyl)ethylenediamine is proposed. The high initial rate of this reaction allows analytical measurements to be made within only 0.5–1 s, which makes the method applicable to automatic routine analyses. The calibration graph is linear over the range 1.5–65.0 μg mL?1 and the precision (as %RSD) is less than 2%. The presence of antibiotics such as penicillins and cephalosporins in a 100-fold excess has no effect on the analyte determination. The proposed method was satisfactorily used for direct analysis of pharmaceutical formulations containing these antibiotics.  相似文献   

7.
Conductometric studies on the complexation properties of two newly synthesized lariat ethers viz 1,5‐di(cyanoethane)‐2,4 : 7,8 : 13,14‐tribenzo‐1,5‐diaza‐9,12‐dioxacyclopentadeca‐2,7,13‐triene (L1) and 1,5‐di(cyanoethane)‐2,3,4‐pyridine‐7,8 : 13,14‐dibenzo‐1,3,5‐triaza‐9,12‐dioxa cyclopentadeca‐2,7,13‐triene (L2) towards various metal ions in acetonitrile solutions revealed the formation of 1 : 1 ligand metal complexation. These compounds were explored as neutral ionophores for the fabrication of Nd3+ selective and sensitive membrane coated graphite electrodes (CGEs). Among all the electrodes prepared, CGEs with membrane composition L1(5%) : NaTPB(3%) : NPOE (57%) : PVC (35%) and L2(5%) : NaTPB(3%) : NPOE (53%) : PVC (39%) showed best performance. Both the electrodes showed Nernstian response towards Nd3+ ions over a wide concentration range with detection limits 3.8×10?8 mol L?1 and 1.6×10?8 mol L?1 respectively. These electrodes showed a fast response time of <15 s and could be used over a period of three months without significant divergence in their characteristics. The proposed electrodes revealed very good selectivity for Nd3+ ions over several ions. However, higher concentration of Co2+, La3+, Pr3+ and Yb3+ caused some interference. The potentiometric response of these electrodes was excellent in the range of pH 3.5 to 7.6 and they could tolerate up to 20% (v/v) nonaqueous media in the test solutions. These electrodes were used successfully as indicator electrode in the potentiometric titration of Nd3+ against EDTA and also in the quantitative determination of Nd3+ ions from binary mixtures and water samples.  相似文献   

8.

This article focused on the construction and characteristics of novelty and sensitivity of modified carbon paste electrodes for determination of doxycycline hydrochloride (DC.HCl) in urine, serum and pharmaceutical preparations. It was based on the incorporation of α-cyclodextrine (α-CD) and multi-walled carbon nanotube (MWCNT) ionophores which improved the characteristics of the electrodes with tricresylphosphate (TCP) (electrode I) and o-nitrophenyloctylether (o-NPOE) (electrode II) as plasticizers, respectively. The constructed electrodes, at optimum paste composition, exhibited good Nernstian response for determination of doxycycline hydrochloride over a linear concentration range from 1.0 × 10–7 to 1.0 × 10–2 and 1.22 × 10–7 to 1.0 × 10–2 mol L–1 with detection limit of 1.0 × 10–7 and 1.22 ×10–7 mol L–1 and with slope values of (58.7 ± 0.2) mV decade–1 and (58.0 ± 0.6) mV decade–1, for modified carbon paste electrodes (MCPEs; electrodes I and II), respectively. The results showed fast dynamic response time (about 6–7 s) and long lifetime in the range from 4 to 5 months where the response of the electrodes was not affected by pH variation within the range from 2 to 8 and 2 to 7.5 for electrodes I and II, respectively. Electrodes I and II showed high selectivity for doxycycline hydrochloride with respect to a large number of interfering species including foreign inorganic, organic species, excipients and the fillers added to the pharmaceutical preparation. The constructed electrodes were successfully applied for determination of DC.HCl in pure form, its pharmaceutical preparations and biological fluids (urine and serum) using standard addition, calibration curves and potentiometric titration methods. The results obtained using these potentiometric electrodes were comparable with those obtained using official method. The results were satisfactory with excellent percentage recovery comparable or better than those obtained by other routine methods.

  相似文献   

9.
《Analytical letters》2012,45(18):1625-1634
Abstract

Two pH- induced difference- spectrophotometric procedures for the determination of oxyphenbutazone in pharmaceutical formulations are reported. Both procedures depend upon the sensitivity of the ultraviolet spectrum of oxyphenbutazone towards the pH of the solvent medium. In one procedure, the absorbance difference of oxyphenbutazone in an acid solvent (0.01 NHCl) and in an alkaline one (0.01 N NaOH) is measured at 254 nm; the mean percentage recovery amounts to 100.2±1.23 (p=0.05). The second procedure depends upon measurement of the absorbance difference of the drug in the acid solvent then in a pH 7-phosphate buffer at 262 nm; the mean percentage recovery amounts to 100.1±1.03 (p=0.05). The possible sources of interference in pharmaceutical formulations are studied and the two procedures are adapted to the analysis of some market preparations collected at random.  相似文献   

10.
 The construction and electrochemical response characteristics of poly(vinyl) chloride matrix membrane sensors for menadione (vitamin K3) are described. Membranes incorporating the ion association complexes of menadione anion with bathophenanthroline nickel(II) and iron(II) as electroactive materials show linear response for menadione over the range 10−1–10−5M with anionic slopes of 58.2–51.4 mV per concentration decade. Both sensors exhibit fast response time (20–30 s), low detection limit (2 × 10−5M), good stability (4–6 weeks) and selectivity coefficient (10−1–10−3). Direct potentiometric determination of menadione under static and hydrodynamic mode of operations shows average accuracies of 98.8 and 98.5% with relative standard deviations of 0.6% and 1.3%, respectively. Application of the method for the determination of menadione in human plasma gives favourable results compared with those obtained by the standard spectrophotometric method. Received February 26, 2001. Revision October 1, 2001.  相似文献   

11.
The construction and performance characteristics of pentoxifylline selective electrodes were developed. Two types of electrodes: plastic membrane I and coated wire II were constructed based on the incorporation of pentoxifylline with phosphotungstic acid (PTA). The influence of membrane composition, kind of plasticizer, pH of the test solution, soaking time, and foreign ions on the electrodes was investigated. The electrodes showed a Nernstain response with a mean calibration graph slope of 56.77 ± 0.19 and 55.76 ± 0.71 mV decade‐1 at 25 °C for electrode I and II respectively, over pentoxifylline concentration range from 1.0 × 10‐5‐1.0 × 10‐2 and 9.0 × 10‐6‐1.0 × 10‐2 mol L‐1, with detection limits 4.89 × 10‐6 and 3.90 × 10‐6 mol L‐1 for electrode I and II, respectively. The pH range of the constructed electrodes was 4‐6. Interferences from common cations, alkaloids, sugars, amino acids and drug excipients were reported. The results obtained by the proposed electrodes were also applied successfully to the determination of the drug in its pharmaceutical preparations and biological fluids.  相似文献   

12.
Three types of ion‐selective electrodes: PVC membrane, modified carbon paste (CPE), and coated graphite electrodes (CGE) have been constructed for determining paroxetine hydrochloride (Prx). The electrodes are based on the ion pair of paroxetine with sodium tetraphenylborate (NaTPB) using dibutyl phthalate as plasticizing solvent. Fast, stable and potentiometric response was obtained over the concentration range of 1.1×10?5–1×10?2 mol L?1 with low detection limit of 6.9×10?6 mol L?1 and slope of a 56.7±0.3mV decade?1 for PVC membrane electrode, the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 1.2×10?5 mol L?1 and slope of a 57.7±0.6 mV decade?1 for CPE, and the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 8.9×10?6 mol L?1 and slope of a 56.1±0.1 mV decade?1 for CGE. The proposed electrodes display good selectivity for paroxetine with respect to a number of common inorganic and organic species. The electrodes were successfully applied to the potentiometric determination of paroxetine hydrochloride in its pure state, its pharmaceutical preparation, human urine and plasma.  相似文献   

13.
Chitosan (CH) is one of the most abundant biopolymers with multiple applications. Polyvinyl pyrrolidone (PVP) has specific binding and detoxification properties that are of great interest in health care. Hence, it arises a crucial urge to develop economic sensors to analyze CH and PVP in pharmaceutical formulations and biological samples. Two portable sensors were fabricated using precipitation-based technique, and nanoparticles-based technique, for determination of CH and PVP in sensor 1 and 2; respectively. Linear responses of 10−5 to10−7 M and 10−2 to10−7 M at pH 3.6–4.8 and 7.2–8.4, with ideal Nernstian slopes of 60.00 and 59.83 mV /decade, and nanomolar LODs of 94.90 and 81.20 nM were observed for CH and PVP; respectively. The percentage recoveries were 100.40±1.03 and 100.19±0.64 for sensors 1 and 2; respectively. Both sensors were successfully applied in biological fluids without pre-treatment. Accurate results were obtained using sensor 1, in pure form, pharmaceutical formulations, human plasma, rat liver and rat brain, as well as sensor 2, in pure form, pharmaceutical formulations and urine samples. The results were statistically compared with the reported methods and no significant difference was observed.  相似文献   

14.
《Electroanalysis》2004,16(4):298-303
The construction and general performance characteristics of three novel potentiometric PVC membrane sensors responsive to dicyanoargentate anion are described. The sensors are based on the use of magnesium(II)‐ and iron(II)‐phthalocyanines as neutral ionophores and iron(II)‐bathophenanthroline dicyanoargentate ion‐pair complex as an ion exchanger in plasticized PVC matrices. These sensors exhibit fast, stable and near‐Nernstian response (54–59 mV/decade) for the singly charged dicyanoargentate anion over the concentration range 1×10?2–5.8×10?6 M. Potentiometric responses of sensors based on metal phthalocyanines and iron(II)‐bathophenanthroline are stable over the pH ranges 5–7 and 5–12, respectively. The selectivity of the sensors are fairly good over most common anions. Use of the sensors for potentiometric determination of microgram quantities of cyanide ion after conversion into dicyanoargentate anions shows an average recovery of 99.5% and a mean standard deviation of ±0.5%. Determination of cyanide ions in some exhausted electroplating bath samples gives results that compare favourably well with data obtained using the solid‐state cyanide electrode.  相似文献   

15.
A novel method, capillary electrophoresis with amperometric detection, has been established for rapid and effective measurement of levodopa (L-dopa), and benserazide (BS) and its impurity (R,S)-2-amino-3-hydroxypropanohydrazide (Ro-04-1419) in co-beneldopa pharmaceutical formulations. Suitable separation and amperometric detection conditions were investigated and optimized. The optimum conditions of CZE detection were 40 mm phosphate solution at pH 5.3 as running buffer, 17 kV separation voltage, carbon-disk working electrode, 0.95 V (relative to Ag/AgCl) as detection potential, and sample injection for 8 s at 17 kV. The linear ranges were from 1.25 to 50 g mL–1 for L-dopa, 1.2 × 10–1 to 25.5 g mL–1 for BS, and 1.0 × 10–2 to 4.4 × 10–1 g mL–1 for Ro-04-1419, with correlation coefficients of 0.9994, 0.9951, and 0.9933, respectively. The detection limits for L-dopa, BS, and Ro-04-1419 were 0.38, 0.02, and 0.004 g mL–1, respectively. Average recoveries were 100.2% for L-dopa, 102.4% for BS, and 90.8% for Ro-04-1419. This method was successfully applied to co-beneldopa granules and tablets.Revised: 30 November and 22 December 2004  相似文献   

16.
《Electroanalysis》2004,16(12):1002-1008
Preliminary theoretical studies revealed the selective complexation of bis (2‐mercaptoanil) diacetyl (BMDA) with La3+ over several alkali, alkaline earth and heavy metal ions. Thus, novel PVC‐based membrane (PBM) and coated graphite membrane (CGM) sensors for La(III) based on BMDA were prepared. The electrodes display Nernstian behavior over wide concentration ranges (i.e., 1.0×10?5–1.0×10?1 M for PBM and 1.0×10?6–1.0×10?1 M for CGM). The potential response of sensors was pH independent in the range of 4.0–8.0. The sensors possess satisfactory reproducibility, fast response time (<15 s), and specially excellent discriminating ability for La3+ ions with respect to most of the cations. The membrane sensor was used as an indicator electrode in potentiometric titration of lanthanum ions with EDTA. The coated graphite membrane electrode was applied in determination of fluoride ions in mouth wash preparations.  相似文献   

17.
Amr Lotfy Saber 《Electroanalysis》2013,25(12):2707-2714
The present article reports for the first time the use of Aliquat 336S‐atorvastatin as an electroactive material in a poly(vinyl chloride) matrix membrane sensor plasticized with ortho‐nitrophenyl‐octylether (o‐NPOE) or dioctylphthalate (DOP) for determination of atorvastatin in biological samples (human plasma) and in pharmaceutical preparations. The sensor shows fast, stable and reproducible response over the concentration range of 1.0×10?7–1.0×10?2 mol L?1 atorvastatin with anionic slopes of 60.94±0.2 and 58.22±0.2 and pH range of 5.0–9.0 for o‐NPOE and DOP plasticized based membrane sensors, respectively. The response time of the sensor is stable and fast (10 s). Results were achieved with average recoveries of 99.5 % and 99.3 % and mean standard deviations of ±1.1 % and ±1.4 % for o‐NPOE and DOP plasticized based membrane sensors, respectively. The sensor exhibits high selectivity towards atorvastatin in the presence of many anions, drug excipients and diluents. Validation of the method according to the quality assurance standards shows suitability of the proposed sensors for use in the quality control assessment of the drug.  相似文献   

18.
制备了一种以盐酸地尔硫卓与碘汞酸盐形成的缔合物为电活性物质的聚氯乙烯膜盐酸地尔硫卓选择电极,并对其性能做了测定,结果显示该电极对盐酸地尔硫卓有较好的能斯特响应。盐酸地尔硫卓的线性范围为4.5×10~(-2)~1.0×10~(-4)mol·L~(-1),检出限为3.55×10~(-5)mol·L~(-1)。该电极用于盐酸地尔硫卓片剂的分析,结果与药典法结果相符。  相似文献   

19.
《Analytical letters》2012,45(12):2223-2238
Abstract

The use of liquid and poly(vinyl-chloride) membrane electrodes which are sensitive and reasonably selective for pentoxyverine determination is described here. The electrodes are based on the use of pentoxyverine-picrate, pentoxyverine-picrolonate and pentoxyverine-tetraphenylborate ion association complexes as electroactive materials in nitrobenzene or in poly(vinyl chloride) matrix. These electrodes show near Nernstian response values in different concentration ranges, depending on the nature of the used counter-ions, at 3.3–7.8 pH range. Potentiometric determination of pentoxyverine citrate with use of these electrodes gives good results which later on are compared with those obtained by non-aqueous titration.  相似文献   

20.
A simple, fast, inexpensive capillary zone electrophoresis method for the separation and determination of tiapride hydrochloride and its two related impurities in pharmaceutical formulations has been developed and validated. The successful separation of these compounds was achieved in less than 3 min using a fused silica capillary and photodiode array detector at 218 nm. The best conditions were obtained using a 10 mM sodium tetraborate (pH 8.0) as the running buffer. The linear responses covered the ranges from 1.0 to 100 μg mL?1 (R = 0.9989) for tiapride hydrochloride. The detection (LOD) and quantitation limits (LOQ) for tiapride hydrochloride were 2.7 and 9.0 μg mL?1, respectively. The intra- and inter-day relative standard deviations for migration times and peak areas were less than 0.47 and 5.7%, respectively. The method was validated for the determination of tiapride hydrochloride in commercial tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号