首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymerization of methyl methacrylate (MMA) with aliphatic primary amines and carbon tetrachloride has been investigated in th dimethylsulfoxide medium by employing a dilatometric technique at 60°C. The rate of polymerization (Rp) has been evaluated under the conditions, [CCl4]/[amine] < 1 and > 1. The kinetic data indicate possible participation of the charge transfer complexes formed between the amine + CCl4 and the amine + MMA in the polymerization of MMA. In the absence of CCl4 or amine, no polymerization of MMA was observed under the present experimental conditions. The polymerization of MMA was inhibited by hydroquinone, indicating a free radical initiation. The energy of activation varied from 32 to 58 kJ mol?1.  相似文献   

2.
The polymerization of methyl methacrylate (MMA) was carried out in the presence of oligoglycines (glycine, its dimer, trimer, tetramer, etc.), water, cupric ions, and carbon tetrachloride. It was found that poly-MMA is formed in the water layer and that the system using triglycine gives the maximum polymer yield. On the effect of pH of water layer, the rate of polymerization is faster in the alkalic condition (pH 8–10) than in normal condition (pH 3.8), while in the acidic media (pH 2–3), the rate is not accelerated. From the results of kinetic studies, the polymerization rate is dependent on the 0.5 power of the amount of diglycine or cupric ion, and it is independent of the amount of MMA. The polymerization mechanism was discussed.  相似文献   

3.
The charge-transfer complex formed by the interaction of an aliphatic amine, such as n-butylamine (nBA), and carbon tetrachloride (CCl4) in dimethylsulphoxide (DMSO) initiates polymerization of methyl methacrylate (MMA) at 30°. The rate of polymerization is given by Rp = k[MMA]0.83 [nBA]0.5 [CCl4]0.5 when [CCl4]/[nBA] is ? 1. When [CCl4]/[nBA] > 1, Rp is independent of [CCl4] and Rp = k[MMA]1.46 [nBA]0.5. The average rate constants are (1.42 ± 0.05) × 10?6 1 mol?1 sec?1 in terms of MMA and (2.20 ± 0.06) × 10?6 sec?1 at 30° for higher and lower concentration of carbon tetrachloride respectively. A charge-transfer mechanism for polymerization is suggested.  相似文献   

4.
Homopolymerization of methyl methacrylate (MMA) was carried out in the presence of triphenylstibonium 1,2,3,4-tetraphenyl-cyclopentadienylide as an initiator in dioxane at 65°C±0·l°C. The system follows non-ideal radical kinetics (R p ∝ [M]1·4 [I]0·44 @#@) due to primary radical termination as well as degradative chain-transfer reaction. The overall activation energy and average value ofk 2 p /k t were 64 kJmol−1 and 0.173 × 10−3 1 mol−1 s−1 respectively  相似文献   

5.
A kinetic study has been made of polymerization of methyl methacrylate initiated by an electron donor–acceptor complex of liquid SO2 (electron acceptor) and nicotine (donor) in the presence of carbon tetrachloride. It is concluded that the polymerization proceeds through free-radical intermediates similar to the cases of liquid SO2–pyridine and liquid SO2–poly(2-vinylpyridine) complexes. The overall rate of polymerization is proportional to the square root of both liquid SO2 and nicotine concentrations, and the values of kp/kt½ under various polymerization conditions are in satisfactory agreement with the literature values. For the activation energy of initiation, 13.6 kcal/mole is estimated from the kp/kt½ values obtained at temperatures ranging from 0 to 80°C.  相似文献   

6.
7.
The polymerization of methyl methacrylate can be initiated by a charge-transfer complex of liquid sulfur dioxide and pyridine in the presence of carbon tetrachloride. The molar ratio of sulfur dioxide and pyridine which participated in the complex was found from a spectrophotometric study to be 2:1. The polymerization proceeds through free-radical intermediates. The overall rate of polymerization is proportional to the square root of the concentration of the complex, and the values of kp/kt1/2 under the various polymerization conditions were satisfactorily consistent with the literature value. For the activation energy of the overall reaction, 8.2 kcal./mole was obtained, and for initiation, 9.7 kcal./mole was evaluated from the values of kp/kt1/2. It was deduced from a kinetic mechanism for the initiation that a primary radical may be produced from the reduction of carbon tetrachloride by an associated complex consisting of liquid sulfur dioxide–pyridine complex and the monomer.  相似文献   

8.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The present article describes the polymerization of methyl methacrylate by SET‐LRP in protic solvent mixtures. Herein, the polymerization process was catalyzed by a straightforward Cu(0)wire/Me6‐TREN catalyst while initiation was obtained by toluenesulfonyl chloride. All experiments were conducted at 50 °C and the living polymerization was demonstrated by kinetic evaluation of the SET‐LRP. The process follows first order kinetic until all monomer is consumed which was typically achieved within 4 h. The molecular weight increased linearly with conversion and the molecular weight distributions were very narrow with Mw/Mn ~ 1.1. Detailed investigations of the polymer samples by MALDI‐TOF confirmed that no termination took place and that the chain end functionality is retained throughout the polymerization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2236–2242, 2010  相似文献   

9.
The polymerization of methyl methacrylate (MMA) initiated by tri-n-butylborane (TBB) was studied in the presence of various organic halides (R′X). It was found that R′X accelerated the polymerization of MMA. Aliphatic halides were more effective than aromatic halides. Cocatalytic effects of butyl halides decreased in the order: n -BuI > n -BuBr > n -BuCl; n -BuBr ? sec-BuBr > i-BuBr > tert-BuBr. In the polymerization of MMA by TBB- n -BuI, the initial rate of polymerization was found to be proportional to the concentration of MMA and to the square root of the concentration of TBB-n-BuI. The apparent activation energy was 5.3 kcal/mole. From this and other results, it was assumed that the polymerization of MMA by this initiator system proceeds by a radical mechanism via a weak complex between TBB and R′X; alkyl radicals are formed by the interaction of R′X with TBB. The TBB–R′X system can initiate the polymerization of MMA and AN, but is ineffective in the polymerization of styrene.  相似文献   

10.
Benzaldehyde (PhCHO) is found to be able to initiate the radical polymerization of methyl methacrylate (MMA). The rate of polymerization is expressed by the following equation: Rp = const[PhCHO]0.5[MMA]1.5. The overall activation energy is estimated to be 56.3 kJ mole?1. The mechanism of polymerization is discussed.  相似文献   

11.
Polymerization of methyl methacrylate in visible light was studied at 30°C using the isoquino-line–chlorine charge-transfer complex as the photoinitiator. Analyses of kinetic and other data indicate that the polymerization proceeds via a radical mechanism and the termination is initiator dependent. Chain termination via degradative chain (initiator) transfer appears to be significant.  相似文献   

12.
The polymerization of vinyl monomers initiated by binary initiator systems composed of a copper–amine complex type resin and organic halides has been studied. These binary systems initiated the polymerization of various vinyl monomers. A kinetic study of the polymerization of methyl methacrylate initiated by the copper–amine complex resin–CCl4 system was carried out, and it was found that the polymerization proceeds by way of a radical mechanism. This fact was also supported by the copolymerization of methyl methacrylate with styrene. The overall activation energy of the polymerization of methyl methacrylate was estimated as 8.4 kcal/mole. The activity of the initiator systems was greatly dependent upon the dissociation energy of carbon–halogen bonds in the organic halides. A possible initiation mechanism with the binary systems is proposed and discussed.  相似文献   

13.
14.
15.
The polymerization of methyl methacrylate in benzene was initiated by benzoyl peroxide and examined by kinetic analysis particularly from the point of view of primary radical termination. It is concluded that the velocity constant for dissociation of the benzoyloxy radical to give the phenyl radical is affected by the nature of the medium.  相似文献   

16.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The synthesis of poly(methyl methacrylate) via SET‐LRP in dimethyl sulfoxide (DMSO) by using CCl4 as initiator is demonstrated in this work. Resorting to a rather simple Cu(0)/Me6‐TREN catalyst a method was established that allowed for the straightforward design of well‐defined poly(methyl methacrylate). The reactions were performed at various temperatures (25, 50, 60, and 80 °C) and complete monomer conversion could be achieved. The polymerizations obeyed first order kinetic, the molecular weights increased linearly with conversion and the polymers exhibited narrow molecular weight distributions all indicating the livingness of the process. By providing a small amount of hydrazine to the reaction mixture the polymerization could be conducted in presence of air omitting the need for any elaborated deoxygenation procedures. This methodology offers an elegant way to synthesize functionalized poly(methyl methacrylate) with perfect control over the polymerization process as well as molecular architecture. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2243–2250, 2010  相似文献   

17.
In catalytic concentrations (10?5?10?4 mol l?1) sulphur dioxide induces polymerization of MMA, particularly on photoactivation. The effective initiating species appears to be the monomer-SO2 complex rather than free SO2. A mechanism involving biradical initiation by decomposition of the initiating species, linear propagation in two directions, and significant termination of growing chains by chain transfer with initiating species has been suggested. The initiator transfer constant is 1.6 at 40°.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号