首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work we have studied the accuracy of excitation energies calculated from spin-flip transitions with a formulation of time-dependent density functional theory based on a noncollinear exchange-correlation potential proposed in a previous study. We compared the doublet-doublet excitation energies from spin-flip transitions and ordinary transitions, calculated the multiplets splitting of some atoms, the singlet-triplet gaps of some diradicals, the energies of excited quartet states with a doublet ground state. In addition, we attempted to calculate transition energies with excited states as reference. We compared the triplet excitation energies and singlet-triplet separations of the excited state from spin-flip and ordinary transitions. As an application, we show that using excited quartet state as reference can help us fully resolve excited states spin multiplets. In total the obtained excitation energies calculated from spin-flip transitions agree quite well with other theoretical results or experimental data.  相似文献   

2.
Orbital energies, ionization potentials, molecular constants, potential energy curves, and the excitation spectrum of O(2) are calculated using time-dependent density functional theory (TDDFT) with Tamm-Dancoff approximation (TDA). The calculated negative highest occupied molecular orbital energy (-epsilon(HOMO)) is compared with the energy difference ionization potential for five exchange correlation functionals consisting of the local density approximation (LDAxc), gradient corrected Becke exchange plus Perdew correlation (B(88X)+P(86C)), gradient regulated asymptotic correction (GRAC), statistical average of orbital potentials (SAOP), and van Leeuwen and Baerends asymptotically correct potential (LB94). The potential energy curves calculated using TDDFT with the TDA at internuclear distances from 1.0 to 1.8 A are divided into three groups according to the electron configurations. The 1pi(u) (4)1pi(g) (2) electron configuration gives rise to the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) states; the 1pi(u) (3)1pi(g) (3) electron configuration gives rise to the c (1)Sigma(u) (-), C (3)Delta(u), and A (3)Sigma(u) (+) states; and the B (3)Sigma(u) (-), A (1)Delta(u), and f (1)Sigma(u) (+) states are determined by the mixing of two or more electron configurations. The excitation spectrum of the oxygen molecule, calculated with the aforementioned exchange correlation functionals, shows that the results are quite sensitive to the choice of functional. The LDAxc and the B(88X)+P(86C) functionals produce similar spectroscopic patterns with a single strongly absorbing band positioned at 19.82 and 19.72 eV, respectively, while the asymptotically corrected exchange correlation functionals of the SAOP and the LB94 varieties yield similar excitation spectra where the computed strongly absorbing band is located at 16.09 and 16.42 eV, respectively. However, all of the exchange correlation functionals yield only one strongly absorbing band (oscillator strength greater than 0.1) in the energy interval of 0-20 eV, which is assigned to a X (3)Sigma(g) (-) to (3)Sigma(u) (-) transition. Furthermore, the oxygen molecule has a rich spectrum in the energy range of 14-20 eV and no spin allowed absorption bands are predicted to be observed in the range of 0-6 eV.  相似文献   

3.
The (39)K(2) 2 (3)Sigma(g) (+) state has been observed by perturbation-facilitated infrared-infrared double resonance spectroscopy and two-photon excitation. Resolved fluorescence spectra into the a (3)Sigma(u) (+) state have been recorded. The observed vibrational levels have been assigned as the v=23-25, 27, 28, 31-33, 38-45, 47, and 53 levels by comparing the observed and calculated spectra of the 2 (3)Sigma(g) (+)-->a (3)Sigma(u) (+) transitions. Molecular constants have been obtained using a global fitting procedure with a comprehensive set of experimental data. Fine and hyperfine splittings have been resolved in the excitation spectra. Perturbations between the 2 (3)Sigma(g) (+) and 2 (3)Pi(g) states were observed. The hyperfine patterns of the 2 (3)Sigma(g) (+) levels are strongly affected by the perturbation. The perturbation-free and weakly perturbed levels follow the case b(betaS) coupling scheme, while the perturbed levels follow case b(beta J) coupling. A Fermi contact constant, b(F)=65+/-10 MHz, has been obtained. Intensity anomalies of rotational lines appeared both in the 2 (3)Sigma(g) (+) approximately 2 (3)Pi(g)<--b (3)Pi(u) excitation spectra and in the 2 (3)Sigma(g) (+) approximately 2 (3)Pi(g)-->a (3)Sigma(u) (+) resolved fluorescence spectra. These intensity anomalies can be explained in terms of a quantum-mechanical interference effect.  相似文献   

4.
Fluorescence excitation spectra produced through photoexcitation of N(2) using synchrotron radiation in the spectral region between 80 and 100 nm have been studied. Two broadband detectors were employed to simultaneously monitor fluorescence in the 115-320 nm and 300-700 nm regions, respectively. The peaks in the vacuum ultraviolet fluorescence excitation spectra are found to correspond to excitation of absorption transitions from the ground electronic state to the b (1)Pi(u), b(') (1)Sigma(u) (+), c(n) (1)Pi(u) (with n=4-8), c(n) (') (1)Sigma(u) (+) (with n=5-9), and c(4) (')(v('))(1)Sigma(u) (+) (with v(')=0-8) states of N(2). The relative fluorescence production cross sections for the observed peaks are determined. No fluorescence has been produced through excitation of the most dominating absorption features of the b-X transition except for the (1,0), (5,0), (6,0), and (7,0) bands, in excellent agreement with recent lifetime measurements and theoretical calculations. Fluorescence peaks, which correlate with the long vibrational progressions of the c(4) (') (1)Sigma(u) (+) (with v(')=0-8) and the b(') (1)Sigma(u) (+) (with v(') up to 19), have been observed. The present results provide important information for further unraveling of complicated and intriguing interactions among the excited electronic states of N(2). Furthermore, solar photon excitation of N(2) leading to the production of c(4) (')(0) may provide useful data required for evaluating and analyzing dayglow models relevant to the interpretation of c(4) (')(0) in the atmospheres of Earth, Jupiter, Saturn, Titan, and Triton.  相似文献   

5.
An implementation of time-dependent density functional theory (TDDFT) energy gradients into the Amsterdam density functional theory program package (ADF) is described. The special challenges presented by Slater-type orbitals in quantum chemical calculation are outlined with particular emphasis on details that are important for TDDFT gradients. Equations for the gradients of spin-flip TDDFT excitation energies are derived. Example calculations utilizing the new implementation are presented. The results of standard calculations agree well with previous results. It is shown that starting from a triplet reference, spin-flip TDDFT can successfully optimize the geometry of the four lowest singlet states of CH2 and three other isovalent species. Spin-flip TDDFT is used to calculate the potential energy curve of the breaking of the C?CC bond of ethane. The curve obtained is superior to that from a restricted density functional theory calculation, while at the same time the problems with spin contamination exhibited by unrestricted density functional theory calculations are avoided.  相似文献   

6.
A two-dimensional fluorescence (excitation/emission) spectrum of C2 produced in an acetylene discharge was used to identify and separate emission bands from the d (3)Pi(g)<--c (3)Sigma(u) (+) and d (3)Pi(g)<--a (3)Pi(u) excitations. Rotationally resolved excitation spectra of the (4<--1), (5<--1), (5<--2), and (7<--3) bands in the d (3)Pi(g)<--c (3)Sigma(u) (+) system of C2 were observed by laser-induced fluorescence spectroscopy. The molecular constants of each vibrational level, determined from rotational analysis, were used to calculate the spectroscopic constants of the c (3)Sigma(u) (+) state. The principal molecular constants for the c (3)Sigma(u) (+) state are B(e)=1.9319(19) cm(-1), alpha(e)=0.018 55(69) cm(-1), omega(e)=2061.9 cm(-1), omega(e)x(e)=14.84 cm(-1), and T(0)(c-a)=8662.925(3) cm(-1). We report also the first experimental observations of dispersed fluorescence from the d (3)Pi(g) state to the c (3)Sigma(u) (+) state, namely, d (3)Pi(g)(v=3)-->c (3)Sigma(u) (+)(v=0,1).  相似文献   

7.
Anion time-resolved photoelectron imaging has been used to investigate the electronic relaxation dynamics of C(6) (-) following excitation of the C (2)Pi(g)<--X (2)Pi(u) and 2 (2)Pi(g)<--X (2)Pi(u) 0(0) (0) transitions at 607 and 498 nm, respectively. Analysis of evolving photodetachment energy distributions reveals differing relaxation pathways from these prepared states. Specifically, the C (2)Pi(g) 0(0) level relaxes on a time scale of 620+/-30 fs to vibrationally hot ( approximately 2.0 eV) anion ground state both directly and indirectly through vibrationally excited levels of the intermediate-lying A (2)Sigma(g) (+) state that decay with a time scale of 2300+/-200 fs. In contrast, the 2 (2)Pi(g) 0(0) level relaxes much more quickly (<100 fs) to vibrationally hot ( approximately 2.5 eV) anion ground state directly and with transient population accumulation in the A (2)Sigma(g) (+), B (2)Sigma(u) (+), and C (2)Pi(g) electronic levels, as determined by spectral and time-scale analyses. This work also presents the experimental observation of the optically inaccessible B (2)Sigma(u) (+) state, which is found to have an electronic term value of 1.41+/-0.05 eV.  相似文献   

8.
Dynamics of the IR emission induced by excitation of the acetylene molecule using the (3(2)K(a) (0,1,2),A (1)A(u)<--4(1)l(a) (1),X (1)Sigma(g) (+)) transition was investigated. The observed IR emission was assigned to transitions between the ground-state vibrational levels. Acetylene fluorescence quenching induced by external electric and magnetic fields acting upon the system prepared using the (3(4)K(a) (1),A (1)A(u)<--0(0)l(a) (0),X (1)Sigma(g) (+)) excitation was also studied. External electric field creates an additional radiationless pathway to the ground-state levels, coupling levels of the A (1)A(u) excited state to the quasiresonant levels of the X (1)Sigma(g) (+) ground state. The level density of the ground state in the vicinity of the excited state is very high, thus the electric-field-induced transition is irreversible, with the rate constant described by the Fermi rule. Magnetic field alters the decay profile without changing the fluorescence quantum yield in collisionless conditions. IR emission from the CCH transient was detected, and was also affected by the external electric and magnetic fields. Acetylene predissociation was demonstrated to proceed by the direct S(1)-->S(0) mechanism. The results were explained using the previously developed theoretical approach, yielding values of the relevant model parameters.  相似文献   

9.
Potential energy curves for the X (1)Sigma(g) (+) ground state and Omega=0(u) (+), 1(u) valence states and dipole moments for the 0(u) (+), 1(u)-X transitions are obtained in an ab initio configuration interaction study of Cl(2) including spin-orbit coupling. In contrast to common assumptions, it is found that the B (3)Pi(0(+)u)-X transition moment strongly depends on internuclear distance, which has an important influence on the Cl(2) photodissociation. Computed energy curves and transition moments are employed to calculate the A, B, C<--X extinction coefficients, the total spectrum for the first absorption band, and the Cl(*)((2)P(1/2))/Cl((2)P(3/2)) branching ratio as a function of excitation wavelength. The calculated data are shown to be in good agreement with available experimental results.  相似文献   

10.
11.
A new band system of C(2), d (3)Pi(g)<--c (3)Sigma(u) (+) is observed by laser induced fluorescence spectroscopy, constituting the first direct detection of the c (3)Sigma(u) (+) state of C(2). Observations were made by laser excitation of c (3)Sigma(u) (+)(v(")=0) C(2), produced in an acetylene discharge, to the d (3)Pi(g)(v(')=3) level, followed by detection of Swan band fluorescence. Rotational analysis of this band yielded rotational constants for the c (3)Sigma(u) (+)(v(")=0) state: B(0)=1.9218(2) cm(-1), lambda(0)=-0.335(4) cm(-1) and gamma(0)=0.011(2) cm(-1). The vibrational band origin was determined to be nu(3-0)=15861.28 cm(-1).  相似文献   

12.
The structures and vibrational frequencies of the ground and excited states of S(2)N(2) have been calculated using density functional (DF) methods. Time-dependent DF theory (TDDFT) has been used to calculate the excitation energies of the lowest 20 singlet-singlet transitions using a variety of methods. All computational methods predict a small highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap. There is some disagreement in the ordering of the b(2g) and b(3g) pi orbitals. This is reflected in the ordering of the B(2u) and B(3u) states from the TDDFT calculations. The excitation energies and oscillator strengths strongly suggest it is the transitions to these states that are responsible for the experimental electronic spectrum. The calculated geometries and vibrational frequencies for these two states show that both have C(2v) equilibrium structures. Modelling of the vibrational progressions and band shapes suggest that the ordering of the states is B(2u)相似文献   

13.
The photodissociation spectra of CS(2)(+) ions via B(2)Sigma(u)(+) and C(2)Sigma(g)(+) electronic states have been studied by using two-photon excitation, where the parent CS(2)(+) ions were prepared by [3 + 1] REMPI (resonance-enhanced multiphoton ionization) at 483.2 nm from the jet-cooled CS(2) molecules. The [1 + 1] photodissociation spectrum of CS(2)(+) via the B(2)Sigma(u)(+)(upsilon(1)upsilon(2)0) <-- X(2)Pi(g,3/2)(000) transition was obtained by scanning the dissociation laser in the wavelength range of 270-285 nm and detecting the signal of both S(+) and CS(+). The [1 + 1'] photodissociation spectra of CS(2)(+) were obtained by fixing the first dissociation laser at 281.94 or 277.15 nm to excite the B(2)Sigma(u)(+) (000 or 100) <-- X(2)Pi(g,3/2)(000) transitions and scanning the second dissociation laser in the range of 606-763 nm to excite C(2)Sigma(g)(+)(upsilon(1)upsilon(2)0) <-- B(2)Sigma(u)(+)(000,100) transitions. New spectroscopic constants of nu(1) = 666.2 +/- 2.5 cm(-1), nu(2) = 363.2 +/- 1.9 cm(-1), chi(11) = -5.5 +/- 0.1 cm(-1), chi(22) = 1.6 +/- 0.1 cm(-1), chi(12) = -8.6 +/- 0.2 cm(-1), and k(122) = 44.9 +/- 2.5 cm(-1) (Fermi resonance constant) for the C(2)Sigma(g)(+) state are deduced from the [1 + 1'] photodissociation spectra. On the basis of the [1 + 1] and [1 + 1'] photodissociation spectra, the wavelength and level dependence of the product branching ratios CS(+)/S(+) has been found and the dissociation dynamics of CS(2)(+) ions via B(2)Sigma(u)(+) and C(2)Sigma(g)(+) electronic states are discussed.  相似文献   

14.
Time-dependent Schr?dinger equation, TDSE, simulations have been performed in order to prepare and study via MPIPS the evolution of vibrational wave packets on the ion pair electronic state potentials B'B1Sigma(u)(+) and Hh1Sigma(g)(+) of the H2 molecule. Using ab initio potential surfaces and transition moments, we present two- and three-photon excitation schemes with ultrashort pulses (tau 相似文献   

15.
The 39K2 2 3Pi(g) state has been observed by perturbation facilitated infrared-infrared double resonance and two-photon excitations. The vibrational numbering of the 2 3Pi(g) levels was determined by resolved fluorescence into the bound levels as well as to the continuum of the a 3Sigma(u)+ state. The rotational assignment of the 2 3Pi(g) levels excited by two-photon transitions was determined from excitation frequencies and resolved fluorescence into the bound levels of the a 3Sigma(u) + and b 3Pi(u) states. Molecular constants obtained from these observed levels agree with theoretical constants.  相似文献   

16.
The photoionization and photodissociation dynamics of H(2) and D(2) in selected rovibrational levels of the B (1)Sigma(u) (+) and C (1)Pi(u) states have been investigated by velocity map ion imaging. The selected rotational levels of the B (1)Sigma(u) (+) and C (1)Pi(u) states are prepared by three-photon excitation from the ground state. The absorption of fourth photon results in photoionization to produce H(2)(+) X (2)Sigma(g)(+) or photodissociation to produce a ground-state H(1s) atom and an excited H atom with n >or= 2. The H(2) (+) ion can be photodissociated by absorption of a fifth photon. The resulting H(+) or D(+) ion images provide information on the vibrational state dependence of the photodissociation angular distribution of the molecular ion. The excited H(n >or= 2) atoms produced by the neutral dissociation process can also be ionized by the absorption of a fifth photon. The resulting ion images provide insight into the excited state branching ratios and angular distributions of the neutral photodissociation process. While the experimental ion images contain information on both the ionic and neutral processes, these can be separated based on constraints imposed on the fragment translational energies. The angular distribution of the rings in the ion images indicates that the neutral dissociation of molecular hydrogen and its isotopes is quite complex, and involves coupling to both doubly excited electronic states and the dissociation continua of singly excited Rydberg states.  相似文献   

17.
Nonadiabatic theory of molecular spectra of diatomic molecules is presented. It is shown that in the fully nonadiabatic framework, the rovibrational wave functions describing the nuclear motions in diatomic molecules can be obtained from a system of coupled differential equations. The rovibrational wave functions corresponding to various electronic states are coupled through the relativistic spin-orbit coupling interaction and through different radial and angular coupling terms, while the transition intensities can be written in terms of the ground state rovibrational wave function and bound rovibrational wave functions of all excited electronic states that are electric dipole connected with the ground state. This theory was applied in the nearly exact nonadiabatic calculations of energy levels, line positions, and intensities of the calcium dimer in the A (1)Sigma(u) (+)(1 (1)S+1 (1)D), c (3)Pi(u)(1 (3)P+1 (1)S), and a (3)Sigma(u) (+)(1 (3)P+1 (1)S) manifolds of states. The excited state potentials were computed using a combination of the linear response theory within the coupled-cluster singles and doubles framework for the core-core and core-valence electronic correlations and of the full configuration interaction for the valence-valence correlation, and corrected for the one-electron relativistic terms resulting from the first-order many-electron Breit theory. The electric transition dipole moment governing the A (1)Sigma(u) (+)<--X (1)Sigma(g) (+) transitions was obtained as the first residue of the frequency-dependent polarization propagator computed with the coupled-cluster method restricted to single and double excitations, while the spin-orbit and nonadiabatic coupling matrix elements were computed with the multireference configuration interaction wave functions restricted to single and double excitations. Our theoretical results explain semiquantitatively all the features of the observed Ca(2) spectrum in the A (1)Sigma(u) (+)(1 (1)S+1 (1)D), c (3)Pi(u)(1 (3)P+1 (1)S), and a (3)Sigma(u) (+)(1 (3)P+1 (1)S) manifolds of states.  相似文献   

18.
The hyperfine structures of the 2 (3)Sigma(g) (+), 3 (3)Sigma(g) (+), and 4 (3)Sigma(g) (+) states of Na(2) have been resolved with sub-Doppler continuous wave perturbation facilitated optical-optical double resonance spectroscopy via A (1)Sigma(u) (+) approximately b (3)Pi(u) mixed intermediate levels. The hyperfine patterns of these three states are similar. The hyperfine splittings of the low rotational levels are all very close to the case b(betaS) limit. As the rotational quantum number increases, the hyperfine splittings become more complicated and the coupling cases become intermediate between cases b(betaS) and b(beta J) due to spin-rotation interaction. We present a detailed analysis of the hyperfine structures of these three (3)Sigma(g) (+) states, employing both case b(betaS) and b(beta J) coupling basis sets. The results show that the hyperfine splittings of the (3)Sigma(g) (+) states are mainly due to the Fermi-contact interaction. The Fermi contact constants for the two d sigma Rydberg states, the 2 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+), are 245+/-5 MHz and 225+/-5 MHz, respectively, while the Fermi contact constant of the s sigma 3 (3)Sigma(g) (+) Rydberg state is 210+/-5 MHz. The diagonal spin-spin and spin-rotation constants, and nuclear spin-electronic spin dipolar interaction parameters of the 3 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+) states are also obtained.  相似文献   

19.
We have investigated the RbCs 640 nm system by mass-resolved resonance enhanced two-photon ionization in a cold molecular beam. Very complex vibronic structures were observed between 15420 and 15990 cm (-1). The parallel transitions of 2 (3)Pi 0 v' = 4-20 <-- X (1)Sigma (+) v' = 0 were identified by rotationally resolved spectra. Molecular constants and a Rydberg-Klein-Rees potential energy curve of the 2 (3)Pi 0 state were determined. The regular vibrational spacing of the parallel transition indicated that the 2 (3)Pi 0 state is not significantly perturbed by nearby excited electronic states. The complexity of the observed vibronic structures has been attributed to the coupled perpendicular transitions of 2 (1)Pi, 2 (3)Pi 1, and 3 (3)Sigma 1 (+) <-- X (1)Sigma (+) v' = 0. For the perpendicular bands observed in the lower-energy spectral region between 15420 and 15630 cm (-1) where the onsets of the 2 (3)Pi 1 and 3 (3)Sigma 1 (+) <-- X (1)Sigma (+) transitions are located, the upper electronic states and the vibrational quantum numbers were assigned. Perturbations of 2 (3)Pi 1-3 (3)Sigma 1 (+) and 2 (1)Pi-3 (3)Sigma 1 (+) have been identified by the observed level shifts.  相似文献   

20.
In the present work we investigate the adequacy of broken-symmetry unrestricted density functional theory for constructing the potential energy curve of nickel dimer and nickel hydride, as a model for larger bare and hydrogenated nickel cluster calculations. We use three hybrid functionals: the popular B3LYP, Becke's newest optimized functional Becke98, and the simple FSLYP functional (50% Hartree-Fock and 50% Slater exchange and LYP gradient-corrected correlation functional) with two basis sets: all-electron (AE) Wachters+f basis set and Stuttgart RSC effective core potential (ECP) and basis set. We find that, overall, the best agreement with experiment, comparable to that of the high-level CASPT2, is obtained with B3LYP/AE, closely followed by Becke98/AE and Becke98/ECP. FSLYP/AE and B3LYP/ECP give slightly worse agreement with experiment, and FSLYP/ECP is the only method among the ones we studied that gives an unacceptably large error, underestimating the dissociation energy of Ni(2) by 28%, and being in the largest disagreement with the experiment and the other theoretical predictions. We also find that for Ni(2), the spin projection for the broken-symmetry unrestricted singlet states changes the ordering of the states, but the splittings are less than 10 meV. All our calculations predict a deltadelta-hole ground state for Ni(2) and delta-hole ground state for NiH. Upon spin projection of the singlet state of Ni(2), almost all of our calculations: Becke98 and FSLYP both AE and ECP and B3LYP/AE predict (1)(d(A)(x(2)-y(2)d(B)(x(2)-y(2)) or (1)(d(A)(xy) (d)(B)(xy)) ground state, which is a mixture of (1)Sigma(g) (+) and (1)Gamma(g). B3LYP/ECP predicts a (3)(d(A)(x(2)-y(2))d(B)(xy) (mixture of (3)Sigma(g) (-) and (3)Gamma(u)) ground state virtually degenerate with the (1)(d(A)(x(2)-y(2)d(B)(x)(2)-y(2)/(1)(d(A)(xy)D(B)(xy) state. The doublet delta-hole ground state of NiH predicted by all our calculations is in agreement with the experimentally predicted (2)Delta ground state. For Ni(2), all our results are consistent with the experimentally predicted ground state of 0(g) (+) (a mixture of (1)Sigma(g) (+) and (3)Sigma(g) (-)) or 0(u) (-) (a mixture of (1)Sigma(u) (-) and (3)Sigma(u) (+)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号