共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes an improved scheme for the identification of antigens in crude extracts recognized by specific antibodies when analyzed by a combination of two-dimensional gel electrophoresis and immunoblotting. First, protein components in gels are electrophoretically transferred to a polyvinylidene difluoride membrane which does not shrink or change dimensions in organic solvents. The efficiency of transfer and the localization of sample proteins on the membrane are checked and recorded by staining the blotting membrane with Fast Green FCF and recording the profile on a transparency. After blocking and the immunoassay, the results are recorded by photography. The sites of immune reaction are marked and the same membrane is restained briefly with Coomassie Brilliant Blue R-250 for the protein profile. Thus antigens in complex mixtures, recognized by antibodies of interest, can easily be identified from the restained membrane. If the whole protein profile is not well demonstrated, when used in combination with the profile recorded on the transparency, spots appearing on the restained membrane can still be used as useful landmarks in the final unequivocal antigenic identification. This improved scheme circumvents problems arising from membrane shrinkage and difficulties in accurately matching immunoreactive spots by conventional procedures and thus provides an accurate, simple and fast approach in the identification of antigens after immunoblotting. 相似文献
2.
Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection 总被引:15,自引:0,他引:15
Rosenkrands I Weldingh K Jacobsen S Hansen CV Florio W Gianetri I Andersen P 《Electrophoresis》2000,21(5):935-948
Mycobacterium tuberculosis is the infectious agent giving rise to human tuberculosis. The entire genome of M. tuberculosis, comprising approximately 4000 open reading frames, has been sequenced. The huge amount of information released from this project has facilitated proteome analysis of M. tuberculosis. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) was applied to fractions derived from M. tuberculosis culture filtrate, cell wall, and cytosol, resulting in the resolution of 376, 413, and 395 spots, respectively, in silver-stained gels. By microsequencing and immunodetection, 38 culture filtrate proteins were identified and mapped, of which 12 were identified for the first time. In the same manner, 23 cell wall proteins and 19 cytosol proteins were identified and mapped, with 9 and 10, respectively, being novel proteins. One of the novel proteins was not predicted in the genome project, and for four of the identified proteins alternative start codons were suggested. Fourteen of the culture filtrate proteins were proposed to possess signal sequences. Seven of these proteins were microsequenced and the N-terminal sequences obtained confirmed the prediction. The data presented here are an important complement to the genetic information, and the established 2-D PAGE maps (also available at: www.ssi.dk/publichealth/tbimmun) provide a basis for comparative studies of protein expression. 相似文献
3.
Antagonists of protein-protein interactions 总被引:4,自引:0,他引:4
Cochran AG 《Chemistry & biology》2000,7(4):R85-R94
Protein-protein interactions are often attractive, but not straightforward, targets for disease therapy. Two strategies for identifying inhibitors of these interactions, peptide phage display and high-throughput screening, have recently shown new promise. 相似文献
4.
5.
Highly specific protein-protein interfaces have been the subject of considerable study for their potential utility in disrupting or interrogating cellular signaling and control networks. We report that coiled-coil sequences decorated with phenylalanine core residues fold into stable alpha-helical bundles and that these self-sort from similar peptide assemblies with aliphatic core side chains. For self-assembled ensembles derived from 30-residue monomeric peptides, the DeltaG of specificity is -1.5 kcal/mol, comparable with earlier self-sorting coiled-coil systems. Intriguingly, although this interface is constructed from canonical amino acids, it does not appear to have been exploited in native proteins. 相似文献
6.
7.
The activity of light-activatable ("caged") compounds can be temporally and spatially controlled, thereby providing a means to interrogate intracellular biochemical pathways as a function of time and space. Nearly all caged peptides contain photocleavable groups positioned on the side chains of key residues. We describe an alternative active site targeted strategy that disrupts the interaction between the protein target (SH2 domain, kinase, and proteinase) and a critical amide NH moiety of the peptide probe. 相似文献
8.
The capability to selectively and reversibly control protein-protein interactions in antibody-doped polypyrrole (PPy) was accomplished by changing the voltage applied to the polymer. Polypyrrole was doped with sulfate polyanions and monoclonal anti-human fibronectin antibodies (alphaFN). The ability to toggle the binding and dissociation of fibronectin (FN) to alphaFN-doped polypyrrole was demonstrated. Staircase potential electrochemical impedance spectroscopy (SPEIS) was performed to characterize the impedance and charge transfer characteristics of the alphaFN-doped PPy as a function of applied voltage, frequency, and FN concentration. Impedance measurements indicated oxidation of alphaFN-doped PPy promoted selective binding of FN to alphaFN antibodies and reduction of the polymer films facilitated FN dissociation. Moreover, SPEIS measurements suggested that the apparent reversibility of antigen binding to antibody-doped PPy is not due to the suppression of hydrophobic binding forces between antibody and antigen. Instead, our data indicate that reversible antigen binding to antibody-doped PPy can be attributed to the minimization of charge in the polymer films during oxidation and reduction. Furthermore, alphaFN-doped PPy was utilized to collect real-time, dynamic measurements of varying FN concentrations in solution by repeatedly binding and releasing FN. Our data demonstrate that antibody-doped PPy represents an electrically controllable sensing platform which can be exploited to collect rapid, repeated measurements of protein concentrations with molecular specificity. 相似文献
9.
We report a single-molecule fluorescence resonance energy transfer (FRET) and polarization study of conformational dynamics of calmodulin (CaM) interacting with a target peptide, C28W of a 28 amino acid oligomer. The C28W peptide represents the essential binding sequence domain of the Ca-ATPase protein interacting with CaM, which is important in cellular signaling for the regulation of energy in metabolism. However, the mechanism of the CaM/C28W recognition complex formation is still unclear. The amino-terminal (N-terminal) domain of the CaM was labeled with a fluorescein-based arsenical hairpin binder (FlAsH) that enables our unambiguous probing of the CaM N-terminal target-binding domain motions on a millisecond time scale without convolution of the probe-dye random motions. By analyzing the distribution of FRET efficiency between FlAsH labeled CaM and Texas Red labeled C28W and the polarization fluctuation dynamics and distributions of the CaM N-terminal domain, we reveal binding-unbinding motions of the N-terminal domain of the CaM in CaM/C28W complexes, which is strong evidence of a two-state binding interaction of CaM-mediated cell signaling. 相似文献
10.
New chemical crosslinking methods for the identification of transient protein-protein interactions with multiprotein complexes 总被引:1,自引:0,他引:1
Melcher K 《Current protein & peptide science》2004,5(4):287-296
Most proteins function as multiprotein complexes or interact with multiprotein complexes. Identification of protein-protein interactions in the context of their physiologically relevant complexes is therefore key to fully understand the cellular machinery. Here I discuss advances in chemical crosslinking methods that allow investigators to map direct subunit contacts in transient interactions with multimeric complexes. Methods discussed fall into two categories: (i) in vitro approaches with localized, inducible crosslinking reagents and (ii) in vivo approaches with unlocalized crosslinkers. 相似文献
11.
Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions. 相似文献
12.
The characterization of interactions between membrane proteins as they take place within the lipid bilayer poses a technical challenge, which is currently very difficult and, in many cases, impossible to overcome. The recent development of a method based in the combination two-color fluorescence cross-correlation spectroscopy with scanning of the focal volume allows the detection and quantification of interactions between biomolecules inserted in biological membranes. This powerful strategy has allowed the quantitative analysis of diverse systems, such as the association between proteins of the Bcl-2 family involved in apoptosis regulation or the binding between a growth factor and its receptor during signaling. Here, we review the last developments to quantify protein/protein interactions in lipid membranes and focus on the use of fluorescence-correlation-spectroscopy approaches for that purpose. 相似文献
13.
This communication briefly describes how a human heart two-dimensional electrophoresis (2-DE) protein database is being established in our laboratory. The database contains more than 1500 polypeptides and approximately fifty proteins from 2-DE gels of human myocardial tissue have been characterised. Information about the proteins has been compiled including molecular weight (M(r)), isoelectric point (pI), sample spot (SSP) number, protein name, partial sequence, and antibody reacting with the protein. The first stage of this project involves the investigation of protein with pIs in the range pH 4-7. Future studies will employ immobilised pH gradient (IPG) gels as the first dimension of the 2-DE to examine basic proteins. The ultimate goal of this project is to establish a global picture of human heart protein expression in both normal and disease conditions. 相似文献
14.
Studying protein-protein interactions using peptide arrays 总被引:1,自引:0,他引:1
Katz C Levy-Beladev L Rotem-Bamberger S Rito T Rüdiger SG Friedler A 《Chemical Society reviews》2011,40(5):2131-2145
Screening of arrays and libraries of compounds is well-established as a high-throughput method for detecting and analyzing interactions in both biological and chemical systems. Arrays and libraries can be composed from various types of molecules, ranging from small organic compounds to DNA, proteins and peptides. The applications of libraries for detecting and characterizing biological interactions are wide and diverse, including for example epitope mapping, carbohydrate arrays, enzyme binding and protein-protein interactions. Here, we will focus on the use of peptide arrays to study protein-protein interactions. Characterization of protein-protein interactions is crucial for understanding cell functionality. Using peptides, it is possible to map the precise binding sites in such complexes. Peptide array libraries usually contain partly overlapping peptides derived from the sequence of one protein from the complex of interest. The peptides are attached to a solid support using various techniques such as SPOT-synthesis and photolithography. Then, the array is incubated with the partner protein from the complex of interest. Finally, the detection of the protein-bound peptides is carried out by using immunodetection assays. Peptide array screening is semi-quantitative, and quantitative studies with selected peptides in solution are required to validate and complement the screening results. These studies can improve our fundamental understanding of cellular processes by characterizing amino acid patterns of protein-protein interactions, which may even develop into prediction algorithms. The binding peptides can then serve as a basis for the design of drugs that inhibit or activate the target protein-protein interactions. In the current review, we will introduce the recent work on this subject performed in our and in other laboratories. We will discuss the applications, advantages and disadvantages of using peptide arrays as a tool to study protein-protein interactions. 相似文献
15.
Protein-protein interactions are attractive but challenging targets for drug discovery. Recent technological progress and examples using macrocyclic peptides as protein interaction modulators are reviewed. 相似文献
16.
The serine/threonine kinase Polo-like kinase 1 (Plk1) is overexpressed in many types of human cancers, and has been implicated as an adverse prognostic marker for cancer patients. Plk1 localizes to its intracellular anchoring sites via its polo-box domain (PBD). Here we show that Plk1 can be inhibited by small molecules which interfere with its intracellular localization by inhibiting the function of the PBD. We report the natural product thymoquinone and, especially, the synthetic thymoquinone derivative Poloxin as inhibitors of the Plk1 PBD. Both compounds inhibit the function of the Plk1 PBD in vitro, and cause Plk1 mislocalization, chromosome congression defects, mitotic arrest, and apoptosis in HeLa cells. Our data validate the Plk1 PBD as an anticancer target and provide a rationale for developing thymoquinone derivatives as anticancer drugs. 相似文献
17.
18.
Tzakos AG Fokas D Johannes C Moussis V Hatzimichael E Briasoulis E 《Molecules (Basel, Switzerland)》2011,16(6):4408-4427
We are currently witnessing a decline in the development of efficient new anticancer drugs, despite the salient efforts made on all fronts of cancer drug discovery. This trend presumably relates to the substantial heterogeneity and the inherent biological complexity of cancer, which hinder drug development success. Protein-protein interactions (PPIs) are key players in numerous cellular processes and aberrant interruption of this complex network provides a basis for various disease states, including cancer. Thus, it is now believed that cancer drug discovery, in addition to the design of single-targeted bioactive compounds, should also incorporate diversity-oriented synthesis (DOS) and other combinatorial strategies in order to exploit the ability of multi-functional scaffolds to modulate multiple protein-protein interactions (biological hubs). Throughout the review, we highlight the chemistry driven approaches to access diversity space for the discovery of small molecules that disrupt oncogenic PPIs, namely the p53-Mdm2, Bcl-2/Bcl-xL-BH3, Myc-Max, and p53-Mdmx/Mdm2 interactions. 相似文献
19.
20.
Rotili D Altun M Hamed RB Loenarz C Thalhammer A Hopkinson RJ Tian YM Ratcliffe PJ Mai A Kessler BM Schofield CJ 《Chemical communications (Cambridge, England)》2011,47(5):1488-1490
Photoactivated cross-linking of peptides to proteins is a useful strategy for identifying enzyme-substrate and protein-protein interactions in cell lysates as demonstrated by studies on the human hypoxia inducible factor system. 相似文献