首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

2.
7‐Alkynylated 7‐deazaadenine (pyrrolo[2,3‐d]pyrimidin‐4‐amine) 2′‐deoxyribonucleosides show strong fluorescence which is induced by the 7‐alkynyl side chain (Table 3). A large Stokes shift with an emission around 400 nm is observed when the compound is irradiated at 280 nm. The solvent dependence indicates the formation of a charged transition state. The fluorescence appears when the triple bond is in conjugation with the heterocyclic base. Electron‐donating substituents at the triple bond increase the fluorescence, while electron‐withdrawing residues reduce it. In comparison, the 7‐alkynylated 8‐aza‐7‐deazaadenine (pyrazolo[3,4‐d]pyrimidin‐4‐amine) 2′‐deoxyribonucleosides are rather weakly fluorescent (Table 4). Quantum yields and fluorescence decay times are measured. The synthesis of the 7‐alkynylated 7‐deaza‐2′‐deoxyadenosines and 8‐aza‐7‐deaza‐2′‐deoxyadenosines was performed with 7‐deaza‐2′‐deoxy‐7‐iodoadenosine ( 6 ) or 8‐aza‐7‐deaza‐2′‐deoxy‐7‐iodoadenosine ( 22 ) as starting materials and employing the Pd0‐catalyzed cross‐coupling reaction with the corresponding alkynes (Schemes 1, 4, and 5). Catalytic hydrogenation of the side chain of the unsaturated nucleosides 5 and 17 afforded the 7‐alkyl derivatives 18 and 19 , respectively, which do not show significant fluorescence (Scheme 2).  相似文献   

3.
Iodination of N2‐isobutyryl‐5‐aza‐7‐deazaguanine ( 7 ) with N‐iodosuccinimide (NIS) gave 7‐iodo‐N2‐isobutyryl‐5‐aza‐7‐deazaguanine ( 8 ) in a regioselective reaction (Scheme 1). Nucleobase‐anion glycosylation of 8 with 2‐deoxy‐3,5‐di‐O‐toluoyl‐α‐D ‐ or α‐L ‐erythro‐pentofuranosyl chloride furnished anomeric mixtures of D ‐ and L ‐nucleosides. The anomeric D ‐nucleosides were separated by crystallization to give the α‐D ‐anomer and β‐D ‐anomer with excellent optical purity. Deprotection gave the 7‐iodo‐5‐aza‐7‐deazaguanine 2′‐deoxyribonucleosides 3 (β‐D ; ≥99% de) and 4 (α‐D ; ≥99% de). The reaction sequence performed with the D ‐series was also applied to L ‐nucleosides to furnish compounds 5 (β‐L ; ≥99% de) and 6 (α‐L ; ≥95% de).  相似文献   

4.
In this study, (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylic acid hydrazide ( 5 ) was synthesized by the condensation of methyl (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylate ( 4 ) with NH2NH2⋅H2O. The (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylic acid 2‐[(arylamino)carbonyl]hydrazides 6a – 6q were prepared by the reaction of 5 with corresponding substituted aryl isocyanates, and the N‐{5‐[(5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐yl]‐1,3,4‐oxadiazol‐2‐yl}arenamines 7a – 7q were obtained via the cyclization reaction of 6a – 6q in the presence of POCl3. The synthesized compounds have a rigid morphine structure, including the 6,14‐endo‐etheno bridge and the 5‐(arylamino)‐1,3,4‐oxadiazol‐2‐yl residue at C(7) adopting the (S)‐configuration (7α). The structures of the compounds were confirmed by high‐resolution mass spectrometry (HR‐MS) and various spectroscopic methods such as FT‐IR, 1H‐NMR, 13C‐NMR, APT, and 2D‐NMR (HETCOR, COSY, INADEQUATE).  相似文献   

5.
Oligonucleotides containing 7‐deaza‐2′‐deoxyinosine derivatives bearing 7‐halogen substituents or 7‐alkynyl groups were prepared. For this, the phosphoramidites 2b – 2g containing 7‐substituted 7‐deaza‐2′‐deoxyinosine analogues 1b – 1g were synthesized (Scheme 2). Hybridization experiments with modified oligonucleotides demonstrate that all 2′‐deoxyinosine derivatives show ambiguous base pairing, as 2′‐deoxyinosine does. The duplex stability decreases in the order Cd>Ad>Td>Gd when 2b – 2g pair with these canonical nucleosides (Table 6). The self‐complementary duplexes 5′‐d(F7c7I‐C)6, d(Br7c7I‐C)6, and d(I7c7I‐C)6 are more stable than the parent duplex d(c7I‐C)6 (Table 7). An oligonucleotide containing the octa‐1,7‐diyn‐1‐yl derivative 1g , i.e., 27 , was functionalized with the nonfluorescent 3‐azido‐7‐hydroxycoumarin ( 28 ) by the Huisgen–Sharpless–Meldal cycloaddition ‘click’ reaction to afford the highly fluorescent oligonucleotide conjugate 29 (Scheme 3). Consequently, oligonucleotides incorporating the derivative 1g bearing a terminal C?C bond show a number of favorable properties: i) it is possible to activate them by labeling with reporter molecules employing the ‘click’ chemistry. ii) Space demanding residues introduced in the 7‐position of the 7‐deazapurine base does not interfere with duplex structure and stability (Table 8). iii) The ambiguous pairing character of the nucleobase makes them universal probes for numerous applications in oligonucleotide chemistry, molecular biology, and nanobiotechnology.  相似文献   

6.
Four new chamigrane sesquiterpenoids, (6S,10S)-10-bromo-3,11,11-trimethyl-7-methylidenespiro[5.5]undec-2-ene-4-one, (4S,6S,10S)-10-bromo-3,11,11-trimethyl-7-methylidenespiro[5.5]undec-2-ene-4-ol, (3R,4S,6S,10R)-10-bromo-3,11,11-trimethyl-7-methylidenespiro[5.5]undecane-3,4-diol, and (6S,7S,11R)-2-chloro-3,7,11-trimethyl-10-methylidenespiro[5.5]undec-2-ene-7-ol, were isolated from the sea hare Aplysia dactylomela. The chemical structures of new compounds were established by NMR spectroscopy and mass spectrometry. The cytotoxic activity of some of the obtained compounds against promyelocytic HL-60 and monocytic THP-1 leukemia cells was demonstrated.  相似文献   

7.
The ‘click synthesis’ of some novel O‐substituted oximes, 7a – 7t , which contain 1,2,3‐triazolediyl residues, as new analogs of β‐adrenoceptor antagonists is described (Schemes 14). The synthesis of these compounds was achieved in four to five steps. The formation of oximes of 9H‐fluoren‐9‐one and benzophenone, i.e., 9a and 9b , respectively, followed by their reaction with propargyl bromide, afforded O‐propargyl oximes 10a and 10b , respectively, which by a subsequent CuI‐catalyzed Huisgen cycloaddition with prepared β‐azido alcohols 11a – 11j (Schemes 2 and 3), led to the target compounds 7a – 7t in good yields.  相似文献   

8.
The isomeric 2‐substituted‐7(5)‐methyl‐2,3‐dihydro‐5(7)H‐oxazolo[3,2‐a]pyrimidin‐5‐ones 3a‐b and 7‐ones 2a‐b,7a were synthesized by cyclocondensation from the 5‐substituted‐2‐amino‐2‐oxazolines 1a‐b with biselectrophiles. In boiling ethanol, the reaction of 1a‐b with acetylenic esters led to a mixture of 2a‐b,7a with a small amount of (E)‐2‐N‐(2‐ethoxycarbonylethylene)‐5‐substituted‐2‐iminooxazolines 5a‐b . The ring annulation between 1a‐b and diketene gave the 2‐substituted‐7‐hydroxy‐7‐methyl‐2,3,6,7‐tetrahydro‐5H‐oxazolo[3,2‐ a ]pyrimidin‐5‐ones 4a‐b which can be easily dehydrated to provide the 2‐substituted‐7‐methyl‐2,3‐dihydro‐5H‐oxazolo[3,2‐a]pyrimidin‐5‐ones 3a‐b .  相似文献   

9.
Summary Specific heats on the single crystals of Sr2Nb2O7, Sr2Ta2O7 and (Sr1-xBax)2Nb2O7 were measured in a wide temperature range of 2-600 K. Heat anomalies of a λ-type were observed at the incommensurate phase transition of TINC (=495 K) on Sr2Nb2O7 and at the super-lattice phase transition of TSL (=443 K) on Sr2Ta2O7; the transition enthalpies and the transition entropies were estimated. Furthermore, a small heat anomaly was observed at the low temperature ferroelectric phase transition of TLOW (=95 K) on Sr2Nb2O7. The transition temperature TLOW decreases with increasing Ba content x and it vanishes for samples of x>2%.  相似文献   

10.
Two new coumarin glycosides, 7-O-β-D-glucopyranosyl-8-methoxybenzopyranone (1) and 7-hydroxy-8-O-β-glycosylbenzopyranone ((2), are reported along with the isolation of 7,8-dihydroxy coumarin (daphnetin) from Rhododendron lepidotum (aerial part).  相似文献   

11.
The reactions of α‐ferrocenylmethylidene‐β‐oxocarboxylates ( 1 , 2 , 3a , and 3b ) with N‐methyl‐ and N‐(2‐hydroxyethyl)hydrazines ( 5a , 5b ) afford ethyl 1‐alkyl‐5‐aryl(methyl)‐3‐ferrocenylpyrazole‐4‐carboxylates ( 6a , 6b , 6c , 6d , 6e ) (~50%) and N‐alkylhydrazine insertion products, viz., ethyl (N′‐acyl‐N′‐alkylhydrazino)‐3‐ferrocenylpropanoates ( 7a , 7b , 7c , 7d , 7e ) (~20%) and 1‐acyl‐2‐(N′‐alkyl‐N′‐ethoxycarbonylhydrazino)‐2‐ferrocenylethanes ( 8a , 8b , 8c , 8d , 8e ) (~10%). The structures of the compounds obtained were established based on the spectroscopic data and X‐ray diffraction analysis (for pyrazoles 6a and 6b ). J. Heterocyclic Chem., (2011).  相似文献   

12.
A series of 1‐(3‐chloropyridin‐2‐yl)‐5‐(trifluoromethyl)‐1H‐pyrazole‐4‐carboxamide derivatives which have di‐substituents on nitrogen were designed and synthesized. Bioassay results showed that all the synthetic compounds exhibited lower antifungal activities against Gibberella zeae, Cytospora mandshurica, and Fusarium oxysporum than T 3 (14.7, 21.1, and 32.7 μg/mL), but some of them exhibited better activities against Botrytis cinerea, Phytophthora infestans, and Sclerotinia sclerotiorum than T 3 (>200, >200, and >200 μg/mL); the EC50 values of 7d and 7c against B. cinerea were 94.9 and 56.2 μg/mL, respectively. The EC50 values of 7a , 7d , and 7c against S. sclerotiorum were 73.5, 78.7, and 68.5 μg/mL, respectively.  相似文献   

13.
1-(3, 4-Diethoxybenzyl)-6, 7-diethoxy-3, 4-dihydroisoquinoline (drotaverine, 1a) reacts with p-benzoquinone (2) and p-naphthoquinone (3) in nitromethane or during fusion to give 5-(3, 4-diethoxyphenyl)-7, 8-diethoxy-3-hydroxy-5a, 10, 11, 12-tetrahydroindolo[2, 1-a]isoquinoline (4) and 7-(3, 4-diethoxyphenyl)-9, 10-diethoxy-5-hydroxy-7a, 12, 13, 14-tetrahydrobenz[g]indolo[2, 1-a]isoquinoline (5), respectively. Compounds 4 and 5 are smoothly alkylated at the oxygen atom in the presence of bases. The structure of one alkylation product, viz., 3-allyloxy-5-(3, 4-diethoxyphenyl)-7, 8-diethoxy-5a, 10, 11, 12-tetrahydroindolo[2, 1-a]isoquinoline, was established by X-ray diffraction analysis.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 761–769, March, 2005.  相似文献   

14.
Enantiomerically pure (+)‐(1S,4S,5S,6S)‐6‐endo‐(benzyloxy)‐5‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((+)‐ 5 ) and its enantiomer (−)‐ 5 , obtained readily from the Diels‐Alder addition of furan to 1‐cyanovinyl acetate, can be converted with high stereoselectivity into 8‐oxabicyclo[3.2.1]octane‐2,3,4,6,7‐pentol derivatives (see 23 – 28 in Scheme 2). A precursor of them, (1R,2S,4R,5S,6S,7R,8R)‐7‐endo‐(benzyloxy)‐8‐exo‐hydroxy‐3,9‐dioxatricyclo[4.2.1.02,4]non‐5‐endo‐yl benzoate ((−)‐ 19 ), is transformed into (1R,2R,5S, 6S,7R,8S)‐6‐exo,8‐endo‐bis(acetyloxy)‐2‐endo‐(benzyloxy)‐4‐oxo‐3,9‐dioxabicyclo[3.3.1]non‐7‐endo‐yl benzoate ((−)‐ 43 ) (see Scheme 5). The latter is the precursor of several protected 2,6‐anhydrohepturonic acid derivatives such as the diethyl dithioacetal (−)‐ 57 of methyl 3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐D ‐glycero‐D ‐galacto‐hepturonate (see Schemes 7 and 8). Hydrolysis of (−)‐ 57 provides methyl 3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐D ‐glycero‐D ‐galacto‐hepturonate 48 that undergoes highly diastereoselective Nozaki‐Oshima condensation with the aluminium enolate resulting from the conjugate addition of Me2AlSPh to (1S,5S,6S,7S)‐7‐endo‐(benzyloxy)‐6‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐8‐oxabicyclo[3.2.1]oct‐3‐en‐2‐one ((−)‐ 13 ) derived from (+)‐ 5 (Scheme 12). This generates a β‐C‐mannopyranoside, i.e., methyl (7S)‐3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐7‐C‐[(1R,2S,3R,4S,5R,6S,7R)‐6‐endo‐(benzyloxy)‐7‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐4‐endo‐hydroxy‐2‐exo‐(phenylthio)‐8‐oxabicyclo[3.2.1]oct‐3‐endo‐yl]‐L ‐glycero‐D ‐manno‐heptonate ((−)‐ 70 ; see Scheme 12), that is converted into the diethyl dithioacetal (−)‐ 75 of methyl 3‐O‐acetyl‐2,6‐anhydro‐4,5‐dideoxy‐4‐C‐{[methyl (7S)‐3,5,7‐tri‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐L ‐glycero‐D ‐manno‐heptonate]‐7‐C‐yl}‐5‐C‐(phenylsulfonyl)‐L ‐glycero‐D ‐galacto‐hepturonate ( 76 ; see Scheme 13). Repeating the Nozaki‐Oshima condensation to enone (−)‐ 13 and the aldehyde resulting from hydrolysis of (−)‐ 75 , a (1→3)‐C,C‐linked trisaccharide precursor (−)‐ 77 is obtained.  相似文献   

15.
5-Oxo-5H,7H-[2]benzopyrano[4,3-b][1]benzopyran ( 2 ) has been synthesized from 3-(o-hydroxybenzylidene)isochroman-1,4-dione ( 3 ) by reductive cyclization, and from 5H,7H[2]benzo-pyrano[4,3-b][1]benzopyran-5,7-dione ( 4 ) by selective hydro-genation. This second method affords the dihydro compound 6 or 6a,12a-dihydro-5H,7H-[2]benzopyrano[4,3-b] [1 ]benzopyran-5-one as reaction time increases.  相似文献   

16.
In the search for platelet-activating-factor (PAF) antagonists, two new lignan compounds were isolated from the leaves of Syringa reticulata Hara var. mandshurica. Their structures were elucidated as (7R,8S, 8'S)-3,4,3',4'-dimethylenedioxy-8,9-dihydroxy-8.8', 7-O-9'-lignan (mandshuricol A) and (7R,8S,8'S)-3',4'methylenedioxy-4-methoxy-3,8,9-trihydroxy-8.8', 7-O-9'-lignan (mandshuricol B), Mandshuricol A and B showed antagonistic activity on PAF in the [3H] PAF receptor binding assay with IC50 values of 4.8 × 10–5 M and 3.5 × 10–5 M, respectively.  相似文献   

17.
N-Bromo and N-chlorosuccinimides add to 1-phenyltricyclo[4.1.0.02,7]heptane in CH2Cl2 with cleavage of the C(1)-C(7) bond to give isomeric 1 : 1 Markownikoff-type endo, anti-adducts of the norpinane structure in a ∼3 :7 ratio corresponding to N and O alkylation of succinimide.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No.2, pp. 457–460, February, 2005  相似文献   

18.
以5-雄烯二醇为原料,用微生物转化的方法合成了两个重要的神经甾体5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇。所用菌种总枝毛霉为我们自己筛选,并首次应用于5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇的合成中。  相似文献   

19.
The unconventional (5S,7R,8S,9R,10S)‐configurated (?)‐7‐(acetyloxy)‐12,12‐dichloro‐8‐hydroxy‐13,14,15,16‐tetranorlabdan‐11‐one ( 2 ) was synthesized via the HCl‐promoted hydrolysis of (7α)‐7,8‐(isopropylidenedioxy)‐14,15‐dinorlabdan‐11,13‐dione ( 5 ). Possible mechanistic pathways of the reaction are considered. Crystal and molecular structures of the isolated compound 2 were determined by single‐crystal X‐ray structure analysis.  相似文献   

20.
The title compounds, the P(3)‐axially and P(3)‐equatorially substituted cis‐ and trans‐configured 7‐benzyl‐3‐fluoro‐2,4‐dioxa‐7‐aza‐3‐phosphadecalin 3‐oxides (=7‐benzyl‐3‐fluoro‐2,4‐dioxa‐7‐aza‐3‐phosphabicyclo[4.4.0]decane 3‐oxides=5‐benzyl‐2‐fluorohexahydro‐4H‐1,3,2‐dioxaphosphorino[5,4‐b]pyridine 2‐oxides) were prepared (ee>99%) and fully characterized (Schemes 2 and 4). The absolute configurations were established from that of their precursors, the enantiomerically pure cis‐ and trans‐1‐benzyl‐3‐hydroxypiperidine‐2‐methanols which were unambiguously assigned. Being configuratively fixed and conformationally constrained phosphorus analogues of acetylcholine, they mimic rotamers of acetylcholine and are suitable probes for the investigation of molecular interactions with acetylcholinesterase. As determined by kinetic methods, the compounds are irreversible inhibitors of the enzyme displaying significant stereoselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号