首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The field desorption mass spectral behavior of several hydroxyammoniocarboxylates was studied at both low and high emitter heating currents. The molecular weights of these thermally unstable compounds can be determined directly from the low emitter current (<10 mA) field desorption mass spectra, which are dominated by [xM+H]+ and [xM+H? CO2]+ ions (1?x?4). At higher emitter currents (~20 mA), pyrolytic processes become important. These include intermolecular transfer of a single alkyl group yielding [M+alkyl]+ ions, intermolecular isomerization producing a hydroxyaminoester as the rearranged form of the molecule, and elimination of alcohol from the rearranged molecule, producing γ or δ lactones. The distribution of pyrolysis products does not depend significantly on the length of the carboxylate chain, but does appear to depend upon the chain length of the alkyl substituent on nitrogen. The spectra of molecules containing a long alkyl substituent (e.g. C14H29, C22H45) exhibit relatively high levels of [M+alkyl]+ ions, unlike the spectra of compounds which contain only methyl or ethyl substituents on the quaternary nitrogen. These latter compounds exhibit a relatively greater tendency toward lactone formation.  相似文献   

2.
Homoadamantane derivatives can be divided into two groups according to their mass spectra. To the first group belong compounds with electron attracting substituents (COOH, CI, COOCH3, Br); compounds with electron releasing substituents (OCH3, OH, NH3, NHCOCH3) constitute the second group. The most characteristic feature of the first group compounds is the splitting off of the substituent. The hydrocarbon fragment [C11H17]+ thus formed then loses olefin molecules with the formation of corresponding ionic species C11?nH17?2n. The 3-substituted compounds of this group undergo thermal Wagner-Meerwein type rearrangements into adamantane derivatives, resulting in the [C10H15]+ (m/e 135) ion formation; this is the main difference between 1- and 3-substituted homoadamantanes. The series of [CnH2n?6X]+ ions (where X = OCH3, OH, NH2, NHCOCH3, n = 6 to 10) are characteristic of the mass spectra of the second group compounds, the ion [C6H6X]+, [M ? C5H11]+ being the most abundant. The intensity ratio of [M ? C5H11]+ to [M ? C4H9]+ ions is 10:1 for 1-substituted and 3:1 for 3-substituted compounds of this group, allowing the location of the substituent. Some individual features of the spectra are also reported.  相似文献   

3.
The low-energy, low-temperature mass spectra of thirteen alkanals are reported and their predominant modes of fragmentation discussed in terms of energetics. Characteristic of this class of compounds is the very high proportion of odd-electron ions in the mass spectra, namely [M ? CMH2m], [M ? H2O] and [M ? H2O ? CmH2m].  相似文献   

4.
The behaviour under electron impact (70 eV) which includes some rearrangement processes of some tetraorganodiphosphanedisulfides R2P(S)-P(S)R2 (R ? CH3, C2H5, n-C3H7, n-C4H9, C3H5, C6H5) and CH3RP(S)–P(S)CH3R (R ? C2H5, n-C3H7, n-C4H9, C6H5, C6H5, C6H5,CH2) is reported and discussed. Fragmentation patterns which are consistent with direct analysis of daughter ions and defocusing metastable spectra are given. The atomic composition of many of the fragment ions was determined by precise mass measurements. In contrast to compounds R3P(S) loss of sulphur is not a common process here. The first step in the fragmentation of these compounds is cleavage of one P–C bond and loss of a substituent R?. The second step is elimination of RPS leading to [R2PS]+ from which the base peaks in nearly all the spectra arise. The phenyl substituted compounds give spectra with very abundant [(C6H5)3P]+. and [(C6H5)2CH3P]+. ions respectively, resulting from [M]+. by migration of C6H5. Rearrangement of [M]+. to a 4-membered P-S ring system prior to fragmentation is suggested.  相似文献   

5.
The gas-phase ion chemistry of protonated O,O-diethyl O-aryl phosphorothionates was studied with tandem mass spectrometric and ab initio theoretical methods. Collision-activated dissociation (CAD) experiments were performed for the [M+H]+ ions on a triple quadrupole mass spectrometer. Various amounts of internal energy were deposited into the ions upon CAD by variation of the collision energy and collision gas pressure. In addition to isobutane, deuterated isobutane C4D10 also was used as reagent gas in chemical ionization. The daughter ions [M+H?C2H4]+ and [M+H?2C2H4]+ dominate the CAD spectra. These fragments arise via various pathways, each of which involves γ-proton migration. Formation of the terminal ions [M+H?2C2H4?H2O]+, [M+H?2C2H4?H2S]+, [ZPhOH2]+, [ZPhSH2]+, and [ZPhS]+ [Z = substituent(s) on the benzene ring] suggests that (1) the fragmenting [M+H]+ ions of O,O-diethyl O-aryl phosphorothionates have protons attached on the oxygen of an ethoxy group and on the oxygen of the phenoxy group; (2) thiono-thiolo rearrangement by aryl migration to sulfur occurs; (3) the fragmenting rear-ranged [M+H]+ ions have protons attached on the oxygen of an ethoxy group and on the sulfur of the thiophenoxy group. To get additional support for our interpretation of the mass spectrometric results, some characteristics of three protomers of O,O-diethyl O-phenyl phosphorothionate were investigated by carrying out ab initio molecular orbital calculations at the RHF/3–21G* level of theory.  相似文献   

6.
The mass spectra of twelve bicyclo[3.3.1]nonanes have been recorded. The high number of metastables observed, exact mass measurements of the ions and low ionising voltage spectra, permitted the rationalisation of most of the fragmentation pathways. The 1-phenyl substituent triggers the major fragmentation in the hydrocarbon, whereas it has minor influence in the oxygenated compounds. Significant differences in the abundance of [M ? H2O]+ ions for stereoisomeric alcohols of this series have been observed.  相似文献   

7.
The mass spectra of several structurally related ring B seco 5-keto compounds (I to VII) have been examined. The mass spectra of I, II, III and IV are conspicuous by an intense peak at m/e112(C7H12O) and those of V (highest mass peak at [M ? CH3COOH]), VI and VII by a prominent peak at m/e 100 (C7H10O), which apparently results from McLafferty rearrangement involving 5-keto function and an appropriate γ-hydrogen at C-8 and C-11. This rearrangement, leading to the aforementioned ions, is of diagnostic value in the characterisation of such compounds. The mass spectrum of VIII exhibits a prominent ion peak at m/e 332 (C23H40O) resulting from McLafferty rearrangement involving the 5-keto function and C2? H. This offers an excellent means of differentiating between the isomeric acids (III and VIII). The fragmentation pathways suggested are supported by accurate mass measurement of the salient fragment ions and in some cases by appropriate metastable peaks.  相似文献   

8.
The positive and negative ion mass spectra, at 70 eV, of p-RC6H4N(O)?NCOOCH3 (R?H, Cl, Br, NO2), C6H5N(O)?NCOOC2H5, p-RC6H4N(O)?NCONH2 (R?H, Cl, Br, NO2) and p-RC6H4N(O)?NCOC6H5 (R?H, Cl, Br, NO2) are reported. The azoxyester derivatives show abundant molecular ions and a number of weak fragment and rearrangement ions in the positive ion mass spectra, whereas weak molecular ions and abundant low mass fragment ions are present in the negative ion mass spectra. Similar behaviour is observed in the mass spectra of the azoxyamides. Conversely, for the azoxycarbonyl compounds the positive molecular ion is absent. A ready cleavage of the N? CO bond occurs and only few fragments of low diagnostic value are formed, whereas the negative molecular ion is the base peak for all these compounds with the exception of the p-NO2 derivative, where [M? O]?? is the base peak and [M]?? is the second major ion. The behaviour under electron impact of these classes of compounds is compared with that of azoxycyanides reported previously.  相似文献   

9.
The H2 and CH4 chemical ionization mass spectra of a selection of substituted nitrobenzenes have been determined. It is shown that reduction of the nitro group to the amine is favoured by high source temperatures and the presence of water in the ion source. The H2 chemical ionization mass spectra are much more useful for distinguishing between isomeric compounds than the CH4 CI mass spectra because of the more extensive fragmentation. For ortho substituents bearing a labile hydrogen abundant [MH ? H2O]+ fragments are observed. When the substituent is electron-releasing both ortho and para substituted nitrobenzenes show abundant [MH? OH]+ fragment ions while meta substituted compounds show abundant loss of NO and NO2 from [MH]+. The latter fragmentation is interpreted in terms of protonation para to the substituent or ortho to the vitro function, while the first two fragmentation routes arise from protonation at the nitro group. When the substituent is electron-attracting the chemical ionization mass spectra of isomers are very similar except for the H2O loss reaction for ortho compounds.  相似文献   

10.
The main fragmentation pathways of the N-1, C-2 and C-4 stereoisomers of the 1,2-dimethyl-4-R-transdecahydroquinoline-4-ol N-oxides (R=C?CH, CH?CH2 and C2H5) under electron impact are discussed. The correlation between the mass spectrometric chromatographic behaviour and the configuration of polar groups in the N-oxides examined is discussed. The mass spectra of the N-1 stereoisomers may be subdivided into two groups, depending only on the orientation of N→O group and not of the 4-OH group. The spectra of N-oxides with the axial N-oxide group reveal less intense ions and much more intense [M? CH3]+, [M? O]+, [M? OH]+ and ions, whereas in the spectra of their equatorial epimers the abundance of the ions exceeds the intensities of the latter ions.  相似文献   

11.
The mass spectra of 30 sulfinamide derivatives (RSONHR', R' alkyl or p-XC6H4) are reported. Most of the spectra had peaks attributable to thermal decomposition products. For some compounds these were identified by pyrolysis under similar conditions to be: RSO2NHR', RSO2SR, RSSR and NH2R' (in all kinds of sulfinyl amides); RSNHR' (in the case of arylsulfinyl arylamides); RSO2C6H4NH2, RSOC6H4NH2 and RSC6H4NH2 (in the case of arylsulfinyl arylamides of the type of X = H) The mass spectra of the three thermally stable compounds showed that there are several kinds of common fragment ions. The mass spectra of the thermally labile compounds had two groups of ions; (i) characteristic fragment ions of the intact molecules and (ii) the molecular ions of the thermal decomposition products. It was concluded that the sulfinamides give the following ions after electron impact: [M]+, [M ? R]+, [M ? R + H]+, [M ? SO]+, [RS]+, [NHR']+, [NHR' + H]+, [RSO]+, [RSO + H]+, [R]+, [R + H]+, [R']+ and [M ? OH]+, and that the thermal decomposition products give the following ions: [RSO2SR]+, [RSSR]+, [M ? O]+, [M + O]+ and [RSOC6H4NH2]+.  相似文献   

12.
The [C4H70]+ ions [CH2?CH? C(?OH)CH3]+ (1), [CH3CH?CH? C(?OH)H]+ (2), [CH2?C(CH3)C(?OH)H]+ (3), [Ch3CH2CH2C?O]+ (4) and [(CH3)2CHC?O]+ (5) have been characterized by their collision-induced dissociation (CID) mass spectra and charge stripping mass spectra. The ions 1–3 were prepared by gas phase protonation of the relevant carbonyl compounds while 4 and 5 were prepared by dissociative electron impact ionization of the appropriate carbonyl compounds. Only 2 and 3 give similar spectra and are difficult to distinguish from each other; the remaining ions can be readily characterized by either their CID mass spectra or their charge stripping mass spectra. The 2-pentanone molecular ion fragments by loss of the C(1) methyl and the C(5) methyl in the ratio 60:40 for metastable ions; at higher internal energies loss of the C(1) methyl becomes more favoured. Metastable ion characteristics, CID mass spectra and charge stripping mass spectra all show that loss of the C(1) methyl leads to formation of the acyl ion 4, while loss of the C(5) methyl leads to formation of protonated vinyl methyl ketone (1). These results are in agreement with the previously proposed potential energy diagram for the [C5H10O]+˙ system.  相似文献   

13.
The electron impact mass spectra of previously unknown 2-alkyl-6-alkoxy-, 2,3-trimethylene-6-alkoxy- and 2-alkyl-6-aryl(hetaryl)-3H-azepines were studied. All compounds give rise to stable molecular ions (I rel = 44–100%) whose fragmentation pattern is determined mainly by the substituent on C6. Decomposition of the molecular ions derived from 6-alkoxy derivatives (R1 = MeO, EtO, i-PrO) follows general relations typical of alkyl ethers. The main characteristic peaks in the mass spectra of 2-methyl-6-aryl- and 2-methyl-6-hetaryl-3H-azepines (R1 = Ph, 1H-pyrrol-1-yl, 5-methylthiophen-2-yl) belong to even-electron rearrangement ions [M − H]+ and [M − Me]+, which have conjugated bi- and tricyclic structures, and products of their subsequent decomposition. Substituents in positions 2 (R2) and 3 (R4) [R4 = H, R2 = Me, Et; R2R4 = (CH2)3] bring some specificity to the fragmentation pattern, but their contribution is not crucial. Original Russian Text ? L.V. Klyba, N.A. Nedolya, O.A. Tarasova, E.R. Zhanchipova, O.G. Volostnykh, 2009, published in Zhurnal Organicheskoi Khimii, 2009, Vol. 45, No. 4, pp. 610–621. For communication VII, see [1].  相似文献   

14.
The electron impact mass spectra of eight polynuclear beryllium complexes Be4O(RCO2)6 (R?H, CH3, C2H5) and Be4O(RCO2)5OR′ (R?CH3, R′?H, CH3, C2H5, C3H7; R?C2H5, R′?C2H5) are reported. The major fragmentations involve the elimination of (RCO)2O (RCOOR′) or Be(RCO2)2 (Be(RCO2)OR′) from the ions [M? L]+ and of {(R? H)CO}, (R′? H), H2O and BeO from the lighter ions. The fragmentation patterns are practically independent of the organic groups present and can be rationalized by stereochemical considerations.  相似文献   

15.
The mass spectra of 5-m- and p-substituted benzylidenehydantoins, their thio analogs and 5-carbethoxymethylenehydantoins with a substituent at the -carbon atom of the side chain were studied. The fragmentation of the molecular ions of 5-arylidenehydantoins proceeds in one direction, splitting of the X=C-NR-C=O fragment, irrespective of the substituent in the benzene ring. The peak intensity of the fragmentary ions formed from the molecular ions is linearly dependent on the -constants of the substituent. The direction of the fragmentation of 5-ethoxycarbonylmethylenehydantoins markedly depends on the substituent at the -carbon atom in the side chain that determines the stability of the hydantoin ring and the carboethoxyl group. The fragmentation of these compounds under electron impact proceeds by five paths, related to splitting of fragments O=C(2)NCH(4)=O, C2H4, C2H5O, C2H5OH, and COOC2H5.See [1] for Communication 64.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 625–631, May, 1988.  相似文献   

16.
The mass spectra of a series of β-ketosilanes, p-Y? C6H4Me2SiCH2C(O)Me and their isomeric silyl enol ethers, p-Y? C6H4Me2SiOC(CH3)?CH2, where Y = H, Me, MeO, Cl, F and CF3, have been recorded. The fragmentation patterns for the β-ketosilanes are very similar to those of their silyl enol ether counterparts. The seven major primary fragment ions are [M? Me·]+, [M? C6H4Y·]+, [M? Me2SiO]+˙, [M? C3H4]+˙, [M? HC?CCF3]+˙, [Me2SiOH]+˙ and [C3H6O]+˙ Apparently, upon electron bombardment the β-ketosilanes must undergo rearrangement to an ion structure very similar to that of the ionized silyl enol ethers followed by unimolecular ion decompositions. Substitutions on the benzene ring show a significant effect on the formation of the ions [M? Me2SiO]+˙ and [Me2SiOH]+˙, electron donating groups favoring the former and electron withdrawing groups favoring the latter. The mass spectral fragmentation pathways were identified by observing metastable peaks, metastable ion mass spectra and ion kinetic energy spectra.  相似文献   

17.
The chemical ionization mass spectra of several hydroxy steroids were obtained using methane as the reactant gas. The spectra are much less complex than the electron ionization spectra and little fragmentation of the steroid nucleus is observed. The major fragment ions involve the loss of water from [M + H]+. A 3-keto group in the steroids was characterized by an abundant [M + C2H5]+ ion. 5α- and 5β-Dihydrotestosterone could be distinguished by their spectra, with H2 as the reactant gas by marked differences in amounts of [M + H]+, [M + H ? H2O]+ and [M + H ? 2H2O]+. Substituted 3α-X-, 17 β-ol compounds, (X = Cl, Br) were also studied to obtain relative amounts of protonation at these sites.  相似文献   

18.
The mass spectra of 5,6,6a,7,12,12a-hexahydrobenzo[a]anthracene and 2-methoxy, 3-methoxy-, 4-methoxy and 1-methyl-4-methoxy derivatives are reported. Among the fragment ions observed under electron impact ionization, [C8H8] and [M? C8H8] can be generated by a retro-Diels-Alder process. Studies of metastable ion reactions show these ions to be formed by fragmentation directly from the molecular ion. The CA spectra of the [C8H8] ions from the subject compounds were compared with spectra from ions of the same composition from various sources. From these data, kinetic energy release measurements and stereochemical considerations, it is concluded that these ions are formed by a stepwise, rather than a concerted mechanism.  相似文献   

19.
The mass spectra of all stereoisomers of decalin-2,3-diol, the corresponding dimethyl ethers and of some deuterated derivatives are discussed. The mass spectra of isomeric decalin-2,3-diols differ only slightly in ion intensities. The mass spectra of the stereoisomeric 2,3-dimethoxy-decalins are nearly identical within the series of transand cisderivatives. A mass spectrometric identification of the stereoisomers of these compounds is therefore diffucult. Stereoselective eliminations from the molecular ion are not observed. The mass spectra -of stereoisomeric decalin-1,4-diols show characteristic differences in the intensities of the[M ? H2O]+˙-ions, which can be related to the geometry of the molecules in a similiar mode as was the case with cyclohexane-1,4-diols, The sterechemical control of the elimination of H2O from the molecular ions has been confirmed by deuterium labelling. The mass spectra of stereoismeric 1,4-dimethoxy-decalins also differ characteristically in the intensities of the [M ? CH3OH]+˙ ions. Furthermore peak due to the [M ? CH2O]+˙ ions are only observed in the mass spectra of those stereoisomers, which have at least one conformation with a short distance between the two methoxy. The stereospecifity of the CH3OH- and CH2O-eliminationjs has also been determined by deuterium labelling.  相似文献   

20.
The isomeric prostaglandins, A and B, can be readily distinguished by differences in the mass spectra of their derivatives. The mass spectra of the PGA1- or PGA2-methyl ester (ME)-trimethyl silyl (TMS) ether derivatives have a prominent ion at [M ? 71]+ or [M ? C5H11]+ while those of the PGB1- or PGB2-ME-TMS derivatives have a predominant ion at [M ? 99]+ or [M ? C6H11O]+ in addition to that at [M ? 71]+. Ions of similar origin characterize the spectra of the PGA1- or PGA2-TMS ether-TMS ester and PGB1- or PGB1-TMS-TMS derivatives, respectively. The fragmentation of other derivatives of PGA1, PGA2, PGB1 and PGB2 such as the ME-t-Bu-DMS (t-butyl-dimethylsilyl ether); ME-MO (methoxime)-TMS; ME-MO-Ac (acetate), and ME-Ac are also described comparatively. The composition of important ions was confirmed by deuterium labeling and/or high resolution mass spectroscopy, where appropriate. The potential advantages and limitations of the derivatives for quantitative analysis of prostaglandins by the specialized technique of multiple ion detection (MID) are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号