首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In this paper we present a numerical valuation of variable annuities with combined Guaranteed Minimum Withdrawal Benefit (GMWB) and Guaranteed Minimum Death Benefit (GMDB) under optimal policyholder behavior solved as an optimal stochastic control problem. This product simultaneously deals with financial risk, mortality risk and human behavior. We assume that market is complete in financial risk and mortality risk is completely diversified by selling enough policies and thus the annuity price can be expressed as appropriate expectation. The computing engine employed to solve the optimal stochastic control problem is based on a robust and efficient Gauss–Hermite quadrature method with cubic spline. We present results for three different types of death benefit and show that, under the optimal policyholder behavior, adding the premium for the death benefit on top of the GMWB can be problematic for contracts with long maturities if the continuous fee structure is kept, which is ordinarily assumed for a GMWB contract. In fact for some long maturities it can be shown that the fee cannot be charged as any proportion of the account value — there is no solution to match the initial premium with the fair annuity price. On the other hand, the extra fee due to adding the death benefit can be charged upfront or in periodic installment of fixed amount, and it is cheaper than buying a separate life insurance.  相似文献   

2.
The aim of this paper is to analyze the impact of management’s strategic choice of asset and liability composition in life insurance on shortfall risk and the shareholders’ fair risk charge. In contrast to previous work, we focus on the effectiveness of management decisions regarding the product mix and the riskiness of the asset side under different surplus appropriation schemes. We propose a model setting that comprises temporary life annuities and endowment insurance contracts. Our numerical results show that the effectiveness of management decisions in regard to risk reduction strongly depends on the surplus appropriation scheme offered to the customer and their impact on guaranteed benefit payments, which thus presents an important control variable for the insurer.  相似文献   

3.
The valuation of options embedded in insurance contracts using concepts from financial mathematics (in particular, from option pricing theory), typically referred to as fair valuation, has recently attracted considerable interest in academia as well as among practitioners. The aim of this article is to investigate the valuation of participating and unit-linked life insurance contracts, which are characterized by embedded rate guarantees and bonus distribution rules. In contrast to the existing literature, our approach models the dynamics of the reference portfolio by means of an exponential Lévy process. Our analysis sheds light on the impact of the dynamics of the reference portfolio on the fair contract value for several popular types of insurance policies. Moreover, it helps to assess the potential risk arising from misspecification of the stochastic process driving the reference portfolio.  相似文献   

4.
We present a numerical approach to the pricing of guaranteed minimum maturity benefits embedded in variable annuity contracts in the case where the guarantees can be surrendered at any time prior to maturity that improves on current approaches. Surrender charges are important in practice and are imposed as a way of discouraging early termination of variable annuity contracts. We formulate the valuation framework and focus on the surrender option as an American put option pricing problem and derive the corresponding pricing partial differential equation by using hedging arguments and Itô’s Lemma. Given the underlying stochastic evolution of the fund, we also present the associated transition density partial differential equation allowing us to develop solutions. An explicit integral expression for the pricing partial differential equation is then presented with the aid of Duhamel’s principle. Our analysis is relevant to risk management applications since we derive an expression of the delta for the sensitivity analysis of the guarantee fees with respect to changes in the underlying fund value. We provide algorithms for implementing the integral expressions for the price, the corresponding early exercise boundary and the delta of the surrender option. We quantify and assess the sensitivity of the prices, early exercise boundaries and deltas to changes in the underlying variables including an analysis of the fair insurance fees.  相似文献   

5.
In this paper we construct a framework to price the inflation-linked derivatives with the stochastic inflation rate, the stochastic interest rate, and stochastic risky assets with stochastic volatility. Because of the popularity of the guaranteed minimum death benefit (GMDB) in insurance market, we mainly study two types of GMDBs: the inflation guarantee and the combination guarantee. We consider the guaranteed minimum death benefit as an European option with a random maturity date, the closed-form pricing formulas for the GMDBs are derived by Fourier-based method. Moreover, we give an elaborate sensitivity analysis to explain economical behaviors of our models. The numerical results show that the death benefit of inflation guarantee is slightly overpriced in constant volatility of stock situation.  相似文献   

6.
We develop a pricing rule for life insurance under stochastic mortality in an incomplete market by assuming that the insurance company requires compensation for its risk in the form of a pre-specified instantaneous Sharpe ratio. Our valuation formula satisfies a number of desirable properties, many of which it shares with the standard deviation premium principle. The major result of the paper is that the price per contract solves a linear partial differential equation as the number of contracts approaches infinity. One can represent the limiting price as an expectation with respect to an equivalent martingale measure. Via this representation, one can interpret the instantaneous Sharpe ratio as a market price of mortality risk. Another important result is that if the hazard rate is stochastic, then the risk-adjusted premium is greater than the net premium, even as the number of contracts approaches infinity. Thus, the price reflects the fact that systematic mortality risk cannot be eliminated by selling more life insurance policies. We present a numerical example to illustrate our results, along with the corresponding algorithms.  相似文献   

7.
In this paper we investigate the local risk-minimization approach for a combined financial-insurance model where there are restrictions on the information available to the insurance company. In particular we assume that, at any time, the insurance company may observe the number of deaths from a specific portfolio of insured individuals but not the mortality hazard rate. We consider a financial market driven by a general semimartingale and we aim to hedge unit-linked life insurance contracts via the local risk-minimization approach under partial information. The Föllmer–Schweizer decomposition of the insurance claim and explicit formulas for the optimal strategy for pure endowment and term insurance contracts are provided in terms of the projection of the survival process on the information flow. Moreover, in a Markovian framework, this leads to a filtering problem with point process observations.  相似文献   

8.
Abstract

This paper is devoted to the problem of hedging contingent claims in the framework of a two factors jump-diffusion model under initial budget constraint. We give explicit formulas for the so called efficient hedging. These results are applied for the pricing of equity linked-life insurance contracts.  相似文献   

9.
In this paper, we investigate the pricing problem for a portfolio of life insurance contracts where the life contingent payments are equity-linked depending on the performance of a risky stock or index. The shot-noise effects are incorporated in the modeling of stock prices, implying that sudden jumps in the stock price are allowed, but their effects may gradually decline over time. The contracts are priced using the principle of equivalent utility. Under the assumption of exponential utility, we find the optimal investment strategy and show that the indifference premium solves a non-linear partial integro-differential equation (PIDE). The Feynman–Kač form solutions are derived for two special cases of the PIDE. We further discuss the problem for the asymptotic shot-noise process, and find the probabilistic representation of the indifference premium. We also provide some numerical examples and analyze parameter sensitivities for the results obtained in this paper.  相似文献   

10.
We study the valuation and hedging of unit-linked life insurance contracts in a setting where mortality intensity is governed by a stochastic process. We focus on model risk arising from different specifications for the mortality intensity. To do so we assume that the mortality intensity is almost surely bounded under the statistical measure. Further, we restrict the equivalent martingale measures and apply the same bounds to the mortality intensity under these measures. For this setting we derive upper and lower price bounds for unit-linked life insurance contracts using stochastic control techniques. We also show that the induced hedging strategies indeed produce a dynamic superhedge and subhedge under the statistical measure in the limit when the number of contracts increases. This justifies the bounds for the mortality intensity under the pricing measures. We provide numerical examples investigating fixed-term, endowment insurance contracts and their combinations including various guarantee features. The pricing partial differential equation for the upper and lower price bounds is solved by finite difference methods. For our contracts and choice of parameters the pricing and hedging is fairly robust with respect to misspecification of the mortality intensity. The model risk resulting from the uncertain mortality intensity is of minor importance.  相似文献   

11.
The fair pricing of explicit and implicit options in life insurance products has received broad attention in the academic literature over the past years. Participating life insurance (PLI) contracts have been the focus especially. These policies are typically characterized by a term life insurance, a minimum interest rate guarantee, and bonus participation rules with regard to the insurer’s asset returns or reserve situation. Researchers replicate these bonus policies quite differently. We categorize and formally present the most common PLI bonus distribution mechanisms. These bonus models closely mirror the Danish, German, British, and Italian regulatory framework. Subsequently, we perform a comparative analysis of the different bonus models with regard to risk valuation. We calibrate contract parameters so that the compared contracts have a net present value of zero and the same safety level as the initial position, using risk-neutral valuation. Subsequently, we analyze the effect of changes in the asset volatility and in the initial reserve amount (per contract) on the value of the default put option (DPO), while keeping all other parameters constant. Our results show that DPO values obtained with the PLI bonus distribution model of Bacinello (2001), which replicates the Italian regulatory framework, are most sensitive to changes in volatility and initial reserves.  相似文献   

12.
We study the problem of optimal insurance contract design for risk management under a budget constraint. The contract holder takes into consideration that the loss distribution is not entirely known and therefore faces an ambiguity problem. For a given set of models, we formulate a minimax optimization problem of finding an optimal insurance contract that minimizes the distortion risk functional of the retained loss with premium limitation. We demonstrate that under the average value-at-risk measure, the entrance-excess of loss contracts are optimal under ambiguity, and we solve the distributionally robust optimal contract-design problem. It is assumed that the insurance premium is calculated according to a given baseline loss distribution and that the ambiguity set of possible distributions forms a neighborhood of the baseline distribution. To this end, we introduce a contorted Wasserstein distance. This distance is finer in the tails of the distributions compared to the usual Wasserstein distance.  相似文献   

13.
ABSTRACT

We focus on mean-variance hedging problem for models whose asset price follows an exponential additive process. Some representations of mean-variance hedging strategies for jump-type models have already been suggested, but none is suited to develop numerical methods of the values of strategies for any given time up to the maturity. In this paper, we aim to derive a new explicit closed-form representation, which enables us to develop an efficient numerical method using the fast Fourier transforms. Note that our representation is described in terms of Malliavin derivatives. In addition, we illustrate numerical results for exponential Lévy models.  相似文献   

14.
Participating contracts are popular insurance policies, in which the payoff to a policyholder is linked to the performance of a portfolio managed by the insurer. We consider the portfolio selection problem of an insurer that offers participating contracts and has an S-shaped utility function. Applying the martingale approach, closed-form solutions are obtained. The resulting optimal strategies are compared with portfolio insurance hedging strategies (CPPI and OBPI). We also study numerical solutions of the portfolio selection problem with constraints on the portfolio weights.  相似文献   

15.
We recast the valuation of annuities and life insurance contracts under mortality and interest rates, both of which are stochastic, as a problem of solving a system of linear equations with random perturbations. A sequence of uniform approximations is developed which allows for fast and accurate computation of expected values. Our reformulation of the valuation problem provides a general framework which can be employed to find insurance premiums and annuity values covering a wide class of stochastic models for mortality and interest rate processes. The proposed approach provides a computationally efficient alternative to Monte Carlo based valuation in pricing mortality-linked contingent claims.  相似文献   

16.
Abstract

Over the years a number of two-factor interest rate models have been proposed that have formed the basis for the valuation of interest rate contingent claims. This valuation equation often takes the form of a partial differential equation that is solved using the finite difference approach. In the case of two-factor models this has resulted in solving two second-order partial derivatives leading to boundary errors, as well as numerous first-order derivatives. In this article we demonstrate that using Green's theorem, second-order derivatives can be reduced to first-order derivatives that can be easily discretized; consequently, two-factor partial differential equations are easier to discretize than one-factor partial differential equations. We illustrate our approach by applying it to value contingent claims based on the two-factor CIR model. We provide numerical examples that illustrate that our approach shows excellent agreement with analytical prices and the popular Crank–Nicolson method.  相似文献   

17.
本文利用复傅里叶级数展开方法(CFS)对最低身故利益保障(GMDB)寿险产品进行定价,其主要的思想是对辅助函数进行傅里叶级数展开.本文考虑了两种剩余寿命密度函数的形式,即联合指数形式和分段常数死亡率形式,并通过运用已知的Levy模型的特征函数来估计级数的系数.我们将主要考虑看涨期权和看跌期权下GMDB产品的定价问题,在数值实验部分我们还通过与余弦级数展开方法(COS)和蒙特卡洛方法(MC)进行比较来说明CFS在计算精度和运行时间方面的优势.  相似文献   

18.
《Optimization》2012,61(2):409-427
Abstract

The problem of finding a deepest point (a ball centre) of a polyhedron is studied. A finite combinatorial interior point method is presented for this problem which yields an algorithm for linear programming. We conjecture that this is a strongly polynomial algorithm. Meanwhile developing the algorithm, several auxiliary results were found; among others, Gorokh and Werner’s algorithm for linear inequalities is slightly extended. Our numerical experiments with the problem detected bugs in a linear interior point solver used in MATLAB 6 Optimization Toolbox.  相似文献   

19.
We consider the pricing of long-dated insurance contracts under stochastic interest rates and stochastic volatility. In particular, we focus on the valuation of insurance options with long-term equity or foreign exchange exposures. Our modeling framework extends the stochastic volatility model of Schöbel and Zhu (1999) by including stochastic interest rates. Moreover, we allow all driving model factors to be instantaneously correlated with each other, i.e. we allow for a general correlation structure between the instantaneous interest rates, the volatilities and the underlying stock returns. As insurance products often incorporate long-term exposures, they are typically more sensitive to changes in the interest rates, volatility and currencies. Therefore, having the flexibility to correlate the underlying asset price with both the stochastic volatility and the stochastic interest rates, yields a realistic model which is of practical importance for the pricing and hedging of such long-term contracts. We show that European options, typically used for the calibration of the model to market prices, and forward starting options can be priced efficiently and in closed-form by means of Fourier inversion techniques. We extensively discuss the numerical implementation of these pricing formulas, allowing for a fast and accurate valuation of European and forward starting options. The model will be especially useful for the pricing and risk management of insurance contracts and other exotic derivatives involving long-term maturities.  相似文献   

20.
In view of the fact that minimum charge and premium budget constraints are natural economic considerations in any risk-transfer between the insurance buyer and seller, this paper revisits the optimal insurance contract design problem in terms of Pareto optimality with imposing these practical constraints. Pareto optimal insurance contracts, with indemnity schedule and premium payment, are solved in the cases when the risk preferences of the buyer and seller are given by Value-at-Risk or Tail Value-at-Risk. The effect of our constraints and the relative bargaining powers of the buyer and seller on the Pareto optimal insurance contracts are highlighted. Numerical experiments are employed to further examine these effects for some given risk preferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号