首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graft copolymerization of maleimide onto polyethylene and ethyl cellulose films by using its sublimation vapor was carried out under ultraviolet irradiation in the presence or absence of air; the effect of air or additives on the grafting reaction and on the nature of the grafted films was investigated. The extent of grafting gradually approached a fixed value, in spite of the continuous ultraviolet irradiation. Air retarded the grafting reaction but did not suppress the reaction nor alter the final extent of grafting. Benzoquinone showed no inhibiting effect on the grafting. The grafted polymaleimide was found to be amorphous, even though ultraviolet irradiation produces a highly crystalline homopolymer in the solid phase as well as in the liquid phase. The results were discussed in comparison with those of the vapor-phase grafting under γ-ray irradiation; the reaction is attributed to the vapor–crystal equilibrium of monomer and to the formation of short-chain crosslinks.  相似文献   

2.
Porous hydrophobic polypropylene (PP) membranes were subjected to the surface modification by the γ-ray induced graft copolymerization with hydrophilic 2-hydroxyethyl methacrylate (HEMA). The structural changes and surface morphologies of the modified PP membranes were characterized by a Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA) and field emission scanning electron microscopy (FE-SEM). Peroxides produced from γ-ray irradiation were determined by a 1,1-diphenyl-2-picryl hydrazyl (DPPH) method and the surface hydrophilicities of membranes were measured by a static contact angle measurement. The contact angle of the modified membranes reduced with the degree of grafting (DG) of HEMA onto the membrane surface, and it decreased up to about half of that before modification. The permeation behaviors of all membranes were investigated by a bovine serum albumin (BSA) filtration experiment. As a result, the DG of the modified membrane increased with the reaction time. However, in the case of irradiation dosage it showed the maximum value at 20 kGy. Also, the modified membrane showed a higher solution flux, lower BSA adsorption, and the better flux recovery after cleaning than that of the unmodified membrane. Particularly, 40.6% grafted membrane showed a two-fold increase in a BSA solution flux, 62% reduction in total fouling and three-fold increase in flux recovery after chemical cleaning.  相似文献   

3.
The copolymerization of carbon monoxide and aziridines such as ethylenimine and propylenimine was carried out by γ-ray irradiation. Aziridines and carbon monoxide were allowed to copolymerize under γ-ray irradiation from a Co60 source and gave a crystalline solid copolymer. The yield of the copolymer increased with reaction temperature. The composition of copolymers obtained did not depend on the feed ratio of monomers and was found to be almost equimolar. The copolymer of ethylenimine and carbon monoxide melted at about 322–335°C. with decomposition and has an infrared spectrum identical with that of poly-β-alanine obtained by the hydrogen-migration polymerization of acrylamide. The hydrolyzed product of the ethylenimine–carbon monoxide copolymer was confirmed to be β-alanine by paper chromatography. These results lead to the conclusion that the copolymerization of aziridines and carbon monoxide took place alternatively by γ-ray irradiation, and produced crystalline poly-β-alanines.  相似文献   

4.
5.
The copolymerization of maleimide (MI) with α‐ethylacrylic acid (EAA) and with ethyl α‐ethylacrylate (EEA) in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDB) was investigated. The copolymerization of MI and EAA was difficult to conduct with the reversible addition–fragmentation chain transfer (RAFT) mechanism because reinitiation of expelled radicals by fragmentation chain transfer was inhibited by the association of EAA in polar solvent and the strong interaction of the imino of MI with the carboxyl of EAA between the propagation chains. When the carboxylic group of EAA was esterified, then the copolymerization went well via RAFT, and alternating copolymers with controlled molecular weight were obtained. Combining by electron spin resonance showed a different result. It was found that before 30% of the comonomer conversion had occurred, the copolymer poly(EEA‐co‐MI) showed increasing molecular weight with the conversion and a rather narrow molecular weight distribution; then the molecular weight of the copolymer began to retard. This phenomenon of retardation was aggravated at high temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3828–3835, 2004  相似文献   

6.
7.
8.
2-Vinyl-1,3-dioxolane was polymerized by use of α,α′-azobisisobutyronitrile (AIBN) or by γ-ray irradiation. The polymer obtained was white amorphous powder which melted at ca. 70°C. and was soluble in chloroform, acetone, and p-dioxane. The infrared spectrum of the polymer indicated peaks at 1735 cm.?1 characteristic of the carbonyl group, and at 1200–1000 cm.?1 characteristic of the acetal group, while no absorption at 990 and 3100 cm.?1 due to the vinyl group was observed. The spectra of the polymers obtained by AIBN and by γ-ray irradiation were essentially identical. The saponified product of the polymer was white powder and its reduced viscosity was a little larger than that of the original polymer. These results indicate that the polymer has no ester unit in the main chain. The results of gas chromatographic analysis of the saponified product of the polymer, indicate the presence of a small amount of ethyl alcohol. The results of the saponification showed that the ester content in the polymer varied from 7 to 25% depending upon the polymerization temperature. These results indicate that 2-vinyl-1,3-dioxolane polymerized by AIBN or by γ-irradiation with two modes of vinyl and hydrogen migration, yielding a copolymer having the unit structures   相似文献   

9.
The alternating copolymerization of carbon monoxide and ethylenimine to give poly-β-alanine could be initiated by γ-irradiation but hardly by α,α'-azobisisobutyronitrile (AIBN). It was found that in the case of the addition of olefin, this system could be copolymerized even by AIBN and that, in the γ-ray copolymerization of carbon monoxide and ethylenimine, the addition of olefin brought about an increase in the copolymer yield. No difference was observed between the nature of copolymers obtained by AIBN and those obtained by γ-irradiation, except in the system carbon monoxide–ethylenimine–ethylene. An increase in the amount of reacted olefin gave rise to an increase in copolymer yield. The melting points of the copolymers were in the range 295–335°C. The infrared spectra, x-ray diffraction diagrams, and NMR spectra of the copolymers were almost identical with that of poly-β-alanine obtained by the hydrogen-migration polymerization of acrylamide. Paper chromatographic analysis of the hydrolysis product of the copolymer showed the existence of β-alanine, ethylamine, and δ-aminovaleric acid homolog in the products. From these results, it was concluded that terpolymerization of carbon monoxide, ethylenimine, and olefin took place in the presence of AIBN or γ-irradiation which gave a crystalline solid copolymer containing the units of nylon 3 and nylon 5. A mechanism of this copolymerization was proposed on the basis of these results.  相似文献   

10.
The kinetics of α-methylene-γ-butyrolactone (α-MBL) homopolymerization was investigated in N,N-dimethylformamide (DMF) with azobis(isobutyronitrile) as initiator. The rate of polymerization (Rp) was expresed by Rp = k[AIBN]0.54[α-MBL]1.1 and the overall activation energy was calculated as 76.1 kJ/mol. Kinetic constants for α-MBL polymerization were obtained as follows: kp/kt1/2 = 0.161 L1/2 mol?1/2·s?1/2; 2fkd = 2.18 × 10?5 s?1. The relative reactivity ratios of α-MBL(M2) copolymerization with styrene (r1 = 0.14, r2 = 0.87) were obtained. Applying the Qe scheme led to Q = 2.2 and e = 0.65. These Q and e values for α-MBL are higher than those for MMA  相似文献   

11.
Under a variety of conditions it has not been possible to induce the free-radical-initiated homopolymerization of α-methacrylophenone (α-MAP). The only product isolated from such efforts was the Diels-Alder dimer of the monomer. A Mayo-Lewis plot of the free-radical copolymerization of α-MAP and styrene shows considerable scatter but the copolymer composition indicates that an α-MAP unit can add to itself. These results have been ascribed to a penultimate effect. α-MAP is homopolymerized by dimsylsodium or n-butyllithium. Attempted copolymerization of α-map and styrene with n-butyllithium produces >95% α-MAP. Unexpectedly, α-MAP does not homopolymerize with lithium dispersion, but does react in the presence of styrene to give product containing a relatively small amount of α-MAP.  相似文献   

12.
13.
14.
α-Chloromethyl-α-methyl-β-propionolactone (CMMPL) has been copolymerized with ε-caprolactone (CL) using a wide range of feed compositions and aluminium triisopropoxide [Al(OiPr)3] as an initiator. Random copolymers of CMMPL with CL were obtained. The pendant chloromethyl groups of the copolymer were converted to quaternary ammonium salts by reaction with pyridine, resulting in an increased hydrophilicity of the copolymers.  相似文献   

15.
High molecular weight poly-β-hydroxybutyrate (PHB) and poly (β-hydroxybutyrate-co-β-benzyl malate) [P (HB? BM)], were prepared by ring-opening polymerization reactions of racemic β-butyrolactone (BL) and racemic β-benzyl malolactonate (BM) using two types of oligomeric aluminoxane catalysts prepared by the reaction of water with either triethyl-aluminum (EAO) or triisobutylaluminum (IBAO). The stereoregularities, crystallinities, and molecular weights were determined for both the PHB homopolymers and the P (HB? BM) copolymers by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). All homopolymers and copolymers obtained could be separated into acetone-soluble and acetone-insoluble fractions. In every case the latter had higher degrees of crystallinity, higher molecular weights and higher degrees of stereoregularity (84–87% isotactic dyads) than the former. Hence all of the polymers obtained from both types of catalysts apparently had stereoblock isotactic structures. Copolymer compositions and monomer dyad sequence distributions were determined by NMR spectroscopy.  相似文献   

16.
A series of comb block copolymers have been prepared and subjected to 60Coγ irradiation. The copolymers contained a polyalkenesulphone backbone, and either polystyrene or polymethylphenylsiloxane as the sidebranches. The alkenes in the polysulphone were one of cycloheptene, 2-hexene, or 2-methylpentene-1 giving a series of backbones of differing low ceiling temperatures. The combs were prepared by creating a macromer of the desired sidearm, and then copolymerizing into the main chain. On γ-irradiation, backbone polysuphones depolymerized leaving behind the comparatively short and radiation resistant sidechains.  相似文献   

17.
18.
β-Pinene and epichlorohydrin (ECH) have been copolymerized cationically using BF3(C2H5)2O and SnCl4 as catalysts. Polymerizations were carried out at ?80°C in methylenechloride. Monomer reactivity ratios were determined in both catalysts which were r1(ECH) = 1.06 ± 0.15 and r2 (β-pinene) = 0.32 ± 0.08 in BF3(C2H5)2O and r1(ECH) = 0.33 ± 0.11 and r2(β-pinene) = 2.03 ± 0.44 in SnCl4. Copolymers of different composition were soluble in acetone and insoluble in methanol. This characteristic was taken to indicate that the polymeric products were real copolymers and not a mixture of two homopolymers of epichlorohydrin and β-pinene.  相似文献   

19.
Electroinitiated cationic copolymerization of indene and α-methylstyrene in dichloromethane has been investigated by constant potential electrolysis. The effects of copolymerization potential and the temperature on the copolymer composition was also studied. Constant potential electrolysis was found to be a suitable method to study the potential effects on copolymer compositions and the reactivity ratios of the monomers. The reactivity ratios were calculated according to integrated Lewis–Mayo equation.  相似文献   

20.
We report the ring‐opening homopolymerization of α‐allyl(valerolactone), compound 2 , and its copolymerization with ε‐caprolactone and δ‐valerolactone using stannous(II) catalysis. Although the polymerization of substituted δ‐valerolactones has received little attention for the preparation of functional polyesters, we found that compound 2 may be incorporated in controllable amounts into copolymers with other lactones, or simply homopolymerized to give a highly functionalized, novel poly(valerolactone). The presence of the pendant allyl substituent had a substantial impact on the thermal properties of these materials relative to conventional polyesters prepared from lactones, and most of the polymers presented here are liquids at room temperature. Dihydroxylation of the pendant allyl groups gave polyesters with increased hydrophilicity that degraded more or less rapidly depending on their extent of functionality. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1983–1990, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号