首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whereas (CH3)3Si? P(C2H5)2 does not react with LiP(C2H5)2 (I), there are reactions of SiH-containing silylphosphines with one P(C2H5)2 group as well as of SiH- and Simethylated silylphosphines with (I), yielding phosphorylated products and LiH according to equ. (1) (2). SiH-containing Silylphosphines, being Si? CH3-free and having more than one P(C2H5)2-group, such as HSi[P(C2H5)2]3, react with LiP(C2H5)2 by exchange of Li for H, acc. to equ.(3). With (CH3)3SiCl, LiSi[P(C2H5)2]3 yields (CH3)3Si? Si[P(C2H5)2]3 and with SiH3Br H3Si? Si[P(C2H5)2]3. There is a cleavage of the Si? P bond with Li-CH3 or n? LiC4H9. The reaction starts as shown in equ. (4), yielding (CH3)3SiH and (CH3)3Si? P(C2H5)2 as intermediate products and finally (CH3)4Si (equ. 5).  相似文献   

2.
The preparation of SiH-containing silylphosphines from SiH-containing chlorosilanes is successful by using an excess of chlorosilans. Chemical shift data and coupling constants of the compounds HxSi[P(C2H5)2]4?x and (CH3)xSi[P(C2H5)2]4?x are communicated and compared with those of HxSiX4?x and (CH3)xSiX4?x (X = halogen or H).  相似文献   

3.
Reactions of P4S10 with Organosilicon Compounds P4S10 ( 1 ) can be degraded with silicon-nitrogen compounds. 1 reacts with (CH3)3Si? N(CH3)2 ( 2 a ) and (CH3)3Si? N(C2H5)2 ( 2 b ) to yield S?P[N(CH3)2]2SSi(CH3)3 ( 3 a ) and ( 3 b ). By the reaction of 1 with [(CH3)3Si]2S ( 4 ) S?P[S? Si(CH3)3]3 ( 6 ) is formed in high yield. (C6H5PS2)2 ( 7 ) was used as a model to investigate the course of the reaction. This leads to C6H5P(S)? [N(CH3)2]SSi(CH3)3 ( 9 ) and C6H5P(S)[SSi(CH3)3]2 ( 10 ). The reaction mechanism will be discussed. The n.m.r. data and mass spectra are reported.  相似文献   

4.
The following p-substituted N,N-bis-trimethlsilyl anilines p-X? C6H4? N[Si(CH3)3]2 are prepared by silylation of free amines: X = H, CH3, C2H5, CH3O, CH3CO, F, Cl, Br, J, CN, C6HS, (CH3)3SiO, and [(CH3)3Si]2N, and the isotopic derivatives C6H5? 15N[Si(CH3)3]2 and C6D5N[Si(CH3)3]2. The vibrational spectra are reported and assigned. The molecular symmetry of p-[(CH3)3Si]2N? C6H4? N[Si(CH3)3]2 is determined. The influence of the mass of the substituents X on the positions of the νsSiNSi vibrational frequencies is discussed.  相似文献   

5.
Formation of Organosilicon Compounds. 66. (H2Si? CH2)2 and Si-substituted Derivatives (H2Si? CH2)2 1 is formed in the reaction of (Cl2Si? CH2)2 with LiAlH4. In 1 , the halogenation of the SiH bond is so much preferred compared to the ring cleavage reaction, that 1 reacts with Cl2 or Br2 to form successively all compounds form 1-monochlor-1,3-disilacyclobutane to (X2Si? CH2)2 (X = Cl, Br). The stability of the 1,3-disilacyclobutane skeleton towards HBr or Br2 increases as the electronegativity of the Si-substituents increases. Thus, (Cl2Si? CH2)2 is cleaved neither by HBr nor by Br2, whereas e. g. [H(C6H5)Si? CH2]2 reacts to [Br(C6H5)Si? CH2]2 with Br2, but yields meH(C6H5)Si? CH2? SiBr(C6H5)H (me = CH3) with HBr. In [me(C6H5)Si? CH2]2, the four-membered ring is cleaved by Br2 as well as by HBr. The 1H-, 29Si- and 13C-n.m.r. data are reported.  相似文献   

6.
NaAl(PH2)4 is prepared by the reaction of NaPH2 with AlCl3 in diglyme according to equation (a) in ?Inhaltsübersicht”?. In the same way NaAl(HPCH3)4 is obtained from CH3PH2. Für obtainung the analogous compound LiAl(HPCH3)4, LiPHCH3 was prepared acc. to equ. (b). NaAl(PH2)4 (soluble in diglyme) allows the formation of SiH- and PH2-containing silylphosphines in preparative yields acc. to equ. (c). H3SiBr, CH3SiH2Br, (CH3)2SiHBr and CH3SiHCl2 react with NaAl(PH2)4 to form H3Si? PH2, CH3SiH2? PH2, (CH3)2SiH? PH2 and CH3SiH(PH2)2, respectively, in about 70% yield. By analogous reaction of NaAl(HPCH3)4 and LiAl(HPCH3)4 the compounds H3Si? PHCH3, CH3SiH2? PHCH3, (CH3)2SiH? PHCH3 and (CH3)3Si? PHCH3 have been obtained. These reaarange acc. to equ. (d), silylphosphones richer in SiH reaaranging faster. 1H and 31P n.m.r. spectra are reported.  相似文献   

7.
The Formation of Disilylphosphino-Element Compounds of C, Si, P The reactions of (me3Si)2PLi · OR2 a (OR2 = 1 monoglyme or 2 THF; me = CH3) with CH3Cl, CH2Cl2, ClCH2CH2Cl and ClCH2? C6H5 give the compounds (me3Si)2Pme, (me3Si)2P? CH2? P(Sime3)2, (me3Si)2P? CH2CH2Cl, (me3Si)2P? CH2CH2? P(Sime3)2 and (me3Si)2P? CH2C6H5 respectively. In the same manner a reacts with me2SiCl2 in a molar ratio 1:1 to (me3Si)2P? Sime2Cl and in a molar ratio 2:1 to (me3Si)2P? Sime2? P(Sime3)2 b . The compound b decomposes to [me3SiP? Sime2]2 and (me3Si)3P at 220°C. In the reactions of a with ClP(C6H5)2 and ClPme2 the compounds (me3Si)2P? P(C6H5)2 and (me3Si)2P? Pme2, respectively, are obtained. a reacts with HgCl2 to (me3Si)2P? P(Sime3)2. (me3Si)3P can be cleaved with ClP(C6H5)2 and ClPme2 yielding (me3Si)2P? P(C6H5)2 and (me3Si)2P? Pme2, respectively. The 1H- and 31P-n.m.r. and mass spectroscopic data are reported.  相似文献   

8.
The partial hydrolysis of [O(CH2CH2C5H4)2]Y(C5H4CH3) 1 , [O(CH2CH2C5H4)2]Y(C5H5) 3 , and [O(CH2CH2C5H4)2]Ho(C5H4CH3) 5 results in the formation of [O(CH2CH2CH2C5H4)2Y(μ-OH)2]2 2 , (C5H5)3Y(OH2) 9 and (MeC5H4)3Ho(OH2) 11 . The new compounds have been characterized by elemental analyses, IR and NMR spectra. The X-ray structural analyses shows 2 to be monoclinic, space group P21/n with a = 1146.0(3), b= 1046.6(3), c = 1514.9(3) pm, β = 94.83(2)°. The molecular structure shows bridging hydroxyl groups with a mean distance Y? O = 223.8(3) pm. 11 crystallizes in the cubic space group 14 3d with a = 1847.9(3)pm with Z = 16 molecules per unit cell. The molecules posses symmetry C3-3, the coordination is trigonal pyramidal with three methylcyclopentadienyl anions and one water molecule as ligands. The distance Ho? O is 231 pm.  相似文献   

9.
Preparation of R4?nPb[Mn(CO)4P(C6H5)3]n Compounds (R?CH3, C6H5; n = 1, 2) As the first examples of organolead manganese carbonyls substituted in the manganese carbonyl ligand compounds of the type R4?nPb[Mn(CO)4P(C6H5)3]n (R?CH3, C6H5; n = 1, 2) have been prepared by the alkali salt method from R4?nPbCln and NaMn(CO)4P(C6H5)3. (C6H5)2Sn[Mn(CO)4P(C6H5)3]2 has been gained by the same method and also by thermal ligand exchange. According the IR data the ligand P(C6H5)3 is trans to the tetrahedrally surrounded lead. In solution to compounds are monomeric.  相似文献   

10.
The silylated cyclopentadiene derivative, (MeO)3Si(CH2)3C5H5, synthesised from commerically-available (MeO)3Si(CH2)3Cl, has been used to prepare the complexes [η5-(MeO)3Si(CH2)3C5H4]Rh(CO)2, [η5-(MeO)3Si(CH2)3C5H4]Rh(COD) (COD = cyclo-octa-1,5-diene), and [η5-(MeO)3Si(CH2)3C5H4]2TiCl2. The complex [η5-(MeO)3Si(CH2)3C5H4]TiCl3, prepared by reaction of NaC5H4(CH2)3Si(OMe)3 with TiCl4 (1/1 molar ratio) and also by reaction of [η5-(MeO)3Si(CH2)3C5H4]Ti(OEt)3 with CH3COCl, proved to be very unstable. Attempts to synthesise the complex [η5-(MeO)3Si(CH2)3C5H4](η5-C5H5)TiCl2, either by reaction of [η5-(MeO)3Si(CH2)3C5H4]TiCl3 with NaC5H4 or reaction of (η5-C5H5)TiCl3 with NaC5H4(CH2)3Si(OMe)3, gave none of the expected product and only (η5-C5H5)2TiCl2 could be isolated from these reactions. The cyclo-octadiene rhodium complex supported on silica has been shown to be an efficient cyclotrimerization catalyst, and the silica-supported titanium complex (SIL-(CH2)3C5H4)2TiCl2 is, after reduction with butyllithium, an efficient and selective catalyst for the hydrogenation of alk-1-enes.  相似文献   

11.
Bis-(trimethylsilyl)acetamide (BSA) reacts with borazines [RNBX]3, R=H,X=F; R=CH3,X=F; R=C6H5,X=F and R=C6H5,X=Cl to the corresponding borazines,X=OSi(CH3)3. The1H-NMR signal of the Si(CH)3-groups of [C6H5NBOSi(CH3)3]3 is at abnormally high field. With [CH3NBCl]3,BSA forms borazines which contain both Si(CH3)3O- and O?C(CH3)=NSiR3 groups bonded to the boron atoms. With LiN[Si(CH3)3]2, [CH3NBCl]3 forms silylaminoboranes.1H-NMR, mass spectrometric and analytical data are reported.  相似文献   

12.
Polymers [N(PN)4(C6H5)6N?P(C6H5)2(CH2)4P(C6H5)2]x and [N(PN)4(C6H5)6N?P–(C6H5)2C6H4C6H4P(C6H5)2]x have been formed by thermal copolymerization of trans-2,6-diazidohexaphenylcyclophosphonitrile [N3(PN)4(C6H5)6N3] with either 1,4-bis-(diphenylphosphino)butane [(C6H5)2P(CH2)4P(C6H5)2] or 4,4′-bis(diphenylphosphino)-biphenyl [(C6H5)2C6H4C6H4P(C6H5)2]. The maximum molecular weights obtained were about 10,000. A polymer endcapped with triphenyl phosphine was stable to 400°C.  相似文献   

13.
In contrast to ruthenocene [Ru(η5‐C5H5)2] and dimethylruthenocene [Ru(η5‐C5H4Me)2] ( 7 ), chemical oxidation of highly strained, ring‐tilted [2]ruthenocenophane [Ru(η5‐C5H4)2(CH2)2] ( 5 ) and slightly strained [3]ruthenocenophane [Ru(η5‐C5H4)2(CH2)3] ( 6 ) with cationic oxidants containing the non‐coordinating [B(C6F5)4]? anion was found to afford stable and isolable metal?metal bonded dicationic dimer salts [Ru(η5‐C5H4)2(CH2)2]2[B(C6F5)4]2 ( 8 ) and [Ru(η5‐C5H4)2(CH2)3]2[B(C6F5)4]2 ( 17 ), respectively. Cyclic voltammetry and DFT studies indicated that the oxidation potential, propensity for dimerization, and strength of the resulting Ru?Ru bond is strongly dependent on the degree of tilt present in 5 and 6 and thereby degree of exposure of the Ru center. Cleavage of the Ru?Ru bond in 8 was achieved through reaction with the radical source [(CH3)2NC(S)S?SC(S)N(CH3)2] (thiram), affording unusual dimer [(CH3)2NCS2Ru(η5‐C5H4)(η3‐C5H4)C2H4]2[B(C6F5)4]2 ( 9 ) through a haptotropic η5–η3 ring‐slippage followed by an apparent [2+2] cyclodimerization of the cyclopentadienyl ligand. Analogs of possible intermediates in the reaction pathway [C6H5ERu(η5‐C5H4)2C2H4][B(C6F5)4] [E=S ( 15 ) or Se ( 16 )] were synthesized through reaction of 8 with C6H5E?EC6H5 (E=S or Se).  相似文献   

14.
Diphenyl-bis(P-trimethylphosphinimino)-phosphonium Chloride The reaction of Na⊕(CH3)3Si? N? P(C6H5)2? N? Si(CH3)3? III with (CH3)3PCI2 results in the elimination of NaCI and (CH3)3SiCI and the formation of (CH3)3P = N? P(C6H5)2? N = P(CH3)3 ⊕CI? VII . The mechanism of the reaction is discussed. (CH3)3P = N? P(C6H5)2 = N? Si(CH3)3 V can be obtained as an intermediate. This intermediate, when synthesized by an other independent route, is found to react with (CH3)3PCI2 to give the same product VII .  相似文献   

15.
Basic Metals. XIII. A New Synthesis of Cyclopentadienylrhodium Phosphonate from Cyclopentadienylrhodium Phosphite Complexes C5H5Rh[P(OCH3)3]2 reacts with alkali metal iodides MI (M = Li, Na, K) in two stages via the intermediate C5H5RhCH3[P(O)(OCH3) 2]P(OCH3)3 to the corresponding bisphosphonate complexes C5H5RhCH3[P(O)(OCH3) 2]2M. Their properties suggest that they exist as contact ionpairs rather than dissociated ions. The reaction of C5H5RhCH3[P(O)(OCH3)2]2 Na with HCl in benzene yields the complex C5H5RhCH3[P(O)(OCH3) 2]2H, in which a chelate ligand with a P? O? H? O? P bridge is probably present. The acidic character of the bridging H atom is shown in the reaction with (CH3)3PCH2 which leads to [C5H5RhCH3{P(O)(OCH3) 2}2][P(CH3)4]. C5H5RhCH3[P(O)(OCH3) 2]2Tl was formed in the reaction of C5H5RhCH3[P(O)(OCH3)2]2 H and thallium acetylacetonate. The n.m.r. spectra of the new phosphonate complexes are discussed.  相似文献   

16.
The new triphosphine CH3P[P(C6H5)2]2, m. p. 130–134º, has been prepared in high yield by the interaction of (C6H5)2PH and CH3P[N(CH3)2]2. This triphosphine is cleaved by CH3J and Br2. With sulfur it yields an adduct of the probable structure CH3P[P(S)(C6H5)2]2, m. p. 163,5–166º.  相似文献   

17.
The first hypercoordinate sila[1]ferrocenophanes [fcSiMe(2‐C6H4CH2NMe2)] ( 5 a ) and [fcSi(CH2Cl)(2‐C6H4CH2NMe2)] ( 5 b ) (fc=(η5‐C5H4)Fe(η5‐C5H4)) were synthesized by low‐temperature (?78 °C) reactions of Li[2‐C6H4CH2NMe2] with the appropriate chlorinated sila[1]ferrocenophanes ([fcSiMeCl] ( 1 a ) and [fcSi(CH2Cl)Cl] ( 1 d ), respectively). Single‐crystal Xray diffraction studies revealed pseudo‐trigonal bipyramidal structures for both 5 a and 5 b , with one of the shortest reported Si???N distances for an sp3‐hybridized nitrogen atom interacting with a tetraorganosilane detected for 5 a (2.776(2) Å). Elongated Si? Cipso bonds trans to the donating NMe2 arms (1.919(2) and 1.909(2) Å for 5 a and 5 b , respectively) were observed relative to both the non‐trans bonds ( 5 a : 1.891(2); 5 b : 1.879(2) Å) and the Si? Cipso bonds of the non‐hypercoordinate analogues ([fcSiMePh] ( 1 b ): 1.879(4), 1.880(4) Å; [fcSi(CH2Cl)Ph] ( 1 e ): 1.881(2), 1.884(2)). Solution‐state fluxionality of 5 a and 5 b , suggestive of reversible coordination of the NMe2 group to silicon, was demonstrated by means of variable‐temperature NMR studies. The ΔG of the fluxional processes for 5 a and 5 b in CD2Cl2 were estimated to be 35.0 and 37.6 kJ mol?1, respectively (35.8 and 38.3 kJ mol?1 in [D8]toluene). The quaternization of 5 a and 5 b by MeOTf, to give [fcSiMe(2‐C6H4CH2NMe3)][OTf] ( 7 a‐ OTf) and [fcSi(CH2Cl)(2‐C6H4CH2NMe3)][OTf] ( 7 b‐ OTf), respectively, supported the reversibility of NMe2 coordination at the silicon center as the source of fluxionality for 5 a and 5 b . Surprisingly, low room‐temperature stability was detected for 5 b due to its tendency to intramolecularly cyclize and form the spirocyclic [fcSi(cyclo‐CH2NMe2CH2C6H4)]Cl ( 9 ‐Cl). This process was observed in both solution and the solid state, and isolation and Xray characterization of 9 ‐Cl was achieved. The model compound, [Fc2Si(2‐C6H4CH2NMe2)2] ( 8 ), synthesized through reaction of [Fc2SiCl2] with two equivalents of Li[2‐C6H4CH2NMe2] at ?78 °C, showed a lack of hypercoordination in both the solid state and in solution (down to ?80 °C). This suggests that either the reduced steric hindrance around Si or the unique electronics of the strained sila[1]ferrocenophanes is necessary for hypercoordination to occur.  相似文献   

18.
C5H5Rh(P(OCH3)3]2 (I) reacts CH3I and (CH3)3OBF4 at low temperatures to give [C5H5RhCH3{P(OCH3)3}2]X (II: X = I; III: X = BF4). Elimination of CH3I from II yields the phosphonate complex C5H5RhCH3[P(OCH3)3]- [P(O)(OCH3)2] (IV) which reacts with (CH3)3OBF4 to give III.  相似文献   

19.
The ionization potentials for the stereoisomers of trans-fused 1,2-dimethyl- and 1-ethyl-2-methyl-4-R-decahydroquinol-4-ols (R?C?CH, CH?CH2 or C2H5) and the appearance potentials for the [M–CH3]+ and [M–C2H5]+ ions (loss of 2-CH3 and 4-C2H5 groups potential, respectively) were measured by using the electron impact method. The ionization and appearance potential for [M–CH3]+ are always lower for the isomers with the axial 2-CH3 group. For the C-2 epimers, the difference between the appearance potentials for the [M–CH3]+ ion values is likely to be equal to the enthalpy differences between the ground states of the epimers and the dissociation energy differences between the axial and equatorial C2–CH3 bonds. The appearance potentials for [M–C2H5]+ for the C-4 epimers possessing the 4-C2H5 group were very similar. At the same time, the appearance potentials for the [M–CH3]+ ions were lower for less stable epimers which had an axial 4-C2H5 group.  相似文献   

20.
Crystal Structure of Tetraphenylphosphonium Monothiocyanatohydro-closo-Decaborate, [P(C6H5)4]2[2-(SCN)B10H9] · CH3CN The X-ray structure determination of [P(C6H5)4]2[2-(SCN)B10H9] · CH3CN (monoclinic, space group P21/n, a = 10.6040(10), b = 13.8880(9), c = 33.888(3) Å, β = 94.095(8)°, Z = 4) reveals the S coordination of the SCN substituent with a B? S distance of 1.913(6) Å and a B? S? C angle of 105.3(3)°. The SCN group is nearly linear (178.2(7)°).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号