首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A model based on an electronegativity scheme is proposed for treatment of monomer reactivity ratios in free-radical bulk copolymerization. Values for each monomer are assigned to three parameters: a relative localization (or resonance stabilization) energy, a radical electronegativity, and a monomer electronegativity. Parameters for 17 monomers are given and calculated reactivity ratios are tabulated for a large number of copolymerizations. Agreement with experiment is usually obtained to within experimental error except for systems involving acrylonitrile. Computed parameters are rationalized on the basis of molecular orbital theory.  相似文献   

2.
A new model for estimating reactivity ratios using the integrated copolymerization equation is presented. The model is a general nonlinear least squares method taking the error in both monomer conversion and monomer fraction into account by a relation between these two variables. Simulations show that the model is able to predict reactivity ratios successfully. Special attention is given to experimental design, i.e., at which initial monomer feed ratios the experiments should be performed in order to obtain reliable values for the reactivity ratios. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3793–3803, 1999  相似文献   

3.
分别通过气相色谱法测定了全氟甲基乙烯基醚 (PMVE)与偏氟乙烯 (VDF)以及PMVE与四氟乙烯(TFE)二元乳液共聚反应中的气相单体组成和共聚物组成 ,然后用非线性回归法 (RREVM )计算得TFE PMVE及VDF PMVE乳液共聚合反应的表观竞聚率分别为γTFE =3 89和γPMVE =0 0 5以及γVDF =1 0 6和γPMVE =0 11.结合已经测定的TFE VDF二元乳液共聚的表观竞聚率 ,计算了由VDF TFE PMVE三元乳液共聚合反应合成的共聚物组成 ,后者与由1 9F NMR实测的共聚物组成吻合  相似文献   

4.
ABSTRACT

The terminal and penultimate model reactivity ratios for the styrene-acrylonitrile monomer system in bulk have been investigated by the simplex and scanning method. It has been shown that Mayo-Lewis equation has an unique solution when determining the reactivity ratios according to the terminal model while for the penultimate model the non-uniqueness in determination of the reactivity ratios has been found. The numerical values of the penultimate r-parameters calculated with the simplex method depend on the initial guess for r-parameters.

Several sets of penultimate reactivity ratios for the styrene-acrylonitrile system in bulk have been found to be equal from mathematical point of view. The reactivity ratios with comparable standard deviation have an equivalent graphical representation on the copolymerization diagragm. It has been also confirmed that the penultimate model is a more appropriate of the models considered to describe the variation of the copolymer composition with the monomer feed. Taking into account previous results for the styrene-methyl methacrylate system in bulk it is thereby assumed that the occurrence non-uniqueness in determination of the penultimate model reactivity ratios does not depend on the monomer system.  相似文献   

5.
Abstract

The composition of the copolymer formed from n monomers in addition polymerization can be expressed in terms of the monomer feed composition and n(n - 1) binary reactivity ratios, according to the familiar simple copolymer model. Reactivity ratios are determined experimentally from cor-responding feed and monomer compositions in binary co-polymerizations. This article reports methods for deriving such reactivity ratios directly from multicomponent polymerization data. Analytical solution of the multi-component copolymer equations is not feasible because of the limited number of experimental points and experimental uncertainty in the copolymer composition. Computer-assisted procedures have been developed to estimate re-activity rates by optimizing the fit of predicted and experimental copolymer compositions, given the monomer feed composition and preliminary values of the reactivity ratios. All n(n - 1) reactivity ratios are adjustable. The methods are demonstrated for styrene/methacrylonitrile/ a-methylstyrene, butadiene/styrene/2-methyl- 5-vinyl- pyridine and acrylonitrile/methyl methacrylate/& methylstyrene systems. Binary reactivity ratios predict ternary copolymer compositions generally well in these cues. Reasons are suggested why reactivity ratios from multicomponent experiments may not match the corresponding parameters from binary copolymerizations.  相似文献   

6.
It has been shown theoretically that composition drift mainly depends on reactivity ratios and water solubilities. Minimum composition drift can be obtained by lowering the monomer-to-water ratio in monomer systems where the more reactive monomer is also the more water-soluble one. Investigating the effect of water solubility on composition drift while keeping the reactivity ratios constant can elucidate the importance of the water solubility. The monomer combinations methyl acrylate-vinyl acetate (MA-VAc), methyl acrylate-vinyl 2,2-dimethylpropanoate (MA-VPV), and methyl acrylate-vinyl 2-ethylhexanoate (MA-V2EH) are ideal monomer combinations for studying the effect of water solubility on composition drift since the reactivity ratios for this series of monomer systems are approximately equal. Solution copolymerizations are performed to elucidate maximum composition drift at extremely high monomer-to-water ratios. From comparing theoretical predictions with experimental results it could be concluded that composition drift for the monomer combination MA-VAc could only be reduced since the difference in water solubility was not large enough to compensate the effects of the large difference in reactivity ratios. However, for the monomer combinations MA-VPV and MA-V2EH the difference in water solubility was large enough to make minimum composition drift possible for low monomer-to-water ratios even for monomer combinations with reactivity ratios as far apart as in the MA-vinyl ester case. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Copolymerization of acrylonitrile with styrene spontaneously occurred on addition of zinc chloride without addition of any other radical initiator. The composition of the copolymer approached that of strictly alternating copolymer as zinc chloride added to the copolymerization system increased. The significance of the apparent monomer reactivity ratios of this copolymerization system was studied from a kinetic point of view, and it was shown that the monomer sequence distribution is indicated by the apparent monomer reactivity ratios. Further, equations which represent the relation between the apparent monomer reactivity ratios and Q,e values at a given salt concentration were derived. These equations reasonably accounted for the decrease of the apparent monomer reactivity ratios of the copolymerization of acrylonitrile with styrene in the presence of zinc chloride and the behavior of the other acrylonitrile copolymerization systems in the presence of zinc chloride. The initiation step of the spontaneous radical copolymerization of acrylonitrile with styrene in the presence of zinc chloride was explained by a cross-initiation mechanism.  相似文献   

8.
Recently a model has been developed capable of predicting absolute monomer concentrations and their ratios in the polymer, aqueous, and monomer droplet phases as a function of conversion in batch emulsion copolymerizations without using any adjustable parameters. In this article the sensitivity of model predictions of composition drift toward deviations of 10% in all model parameters (maximum swellabilities of monomer in the polymer phase, water solubilities, reactivity ratios, and monomer and polymer densities) was estimated using the monomer combination methyl methacrylate-styrene as an example. From the sensitivity analysis it can be concluded that the reactivity ratios are the most important parameters affecting composition drift. The effects of deviations in maximum swellabilities and monomer and polymer densities on composition drift can be neglected, while the water solubility is important only in those cases where the amount of monomer in the aqueous phase cannot be neglected as compared with the total monomer amount. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Abstract

Probability theory has been used to derive equations for the terminal model for free radical terpolymerization, showing how the polymer composition and triad fractions are related to the reactivity ratios and monomer composition. These relationships have been used to analyze the monomer-polymer composition data for the acrylonitrile-styrene-2,4,6-tri-bromophenyl acrylate system using a nonlinear least-squares method. The “best values” of the reactivity ratios which describe the polymerization have been used to calculate the triad fractions for each monomer.  相似文献   

10.
Abstract

Ethyl 3-oxo-4-pentenoate (EAA) and ethyl 4-methyl-3-oxo-4-pentenoate (EMAA) exhibit the coexistence of the ketonic and enolic forms in most organic solvents. Radical copolymerizations of EAA and EMAA with methyl methacrylate (MMA) were carried out at 60 °C in various solvents, and monomer reactivity ratios were estimated. There are minor solvent effects on monomer reactivity ratios rMMA in both EAA/MAA and EM A A/MM A systems. On the other hand, rEAA and rMMA values greatly change with the solvent: The values decrease with an increase in the ketonic fraction of the polymerizable tautomers (EAA and EMAA). Regression analysis of the monomer reactivity ratios with the solvatochromic parameters reveals that polarity of the solvent is the major factor governing the relative reactivity.  相似文献   

11.
Styrene-terminated poly(oxyethylene) macromonomers (SOE) with narrow molecular weight distribution and quantitative styrene monofunc-tionality were synthesized. In homopolymerization of SOE, conversion of monomer to polymer was shown to be low in spite of high consumption of the vinyl groups of the SOE molecules. Free-radical copolymer-ization of the macromonomer with methyl methacrylate and styrene occurred smoothly, as opposed to homopolymerization. Cumulative copolymer composition and total conversion were determined from the conversions of macromonomer and comonomer (by weight changes) and by proton NMR of the copolymer. The monomer reactivity ratios were found to be ra = 0.06 and rb = 2.0 for the copolymerization of SOE macromonomer (a) with methyl methacrylate (b). In this case the macromonomer exhibited considerably lower reactivity than predicted from its low molecular weight model compound. The monomer reactivity ratios estimated for SOE and styrene were ra = 0.86 and rb = 1.20. The reactivity of SOE was comparable to, but somewhat lower than, styrene. The graft copolymers were used as activators in the halogen displacement reaction, and it was found that their catalytic activity depends on copolymer composition and chemical structure.  相似文献   

12.
本文采用计算机数字积分和单纯形调优法根据Alfrey-Goldfinger共聚方程微分式,从HEMA-NVP—St三元共聚高转化率体系的转化率一组成数据,直接求算了各单体的表观竞聚率,用求得的表观竞聚率计算的转化率一组成曲线,与实验值符合很好。讨论了单体部分互溶对表观竞聚率的影响。发现在此三元共聚体系中,引入少量的均化剂,可以明显改善St与其它单体的互溶程度,使相应的表观竞聚率显著降低。  相似文献   

13.
Exact equations and several computer programs were developed for use in studies on copolymerizations carried to high conversion when the concentration of one of the monomers (A) remains constant. Simple ACSL® and DESIRE® programs are described for simulating such copolymerizations, and their output was used to test programs and procedures that were developed to evaluate monomer reactivity ratios for such copolymerization systems. Based on an integrated form of the copolymer equation, Excel® and Fortran programs were developed for evaluating monomer reactivity ratios from information about initial monomer compositions, copolymer compositions, and the fractions of the second monomer (B) that reacted. A graphical procedure for evaluating monomer reactivity ratios from such data was also developed. A previous program developed for calculating information about monomer sequence distributions in copolymers was modified so that it would apply to copolymerization at high conversion when the concentration of one monomer remains constant. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1118–1128, 2000  相似文献   

14.
A common-ion salt, tetra-n-butylammonium perchlorate, was found to affect the monomer reactivity ratios in the cationic copolymerization by acetyl perchlorate of styrene with p-methylstyrene and of 2-chloroethyl vinyl ether with p-methylstyrene, but not those for the copolymerization of 2-chloroethyl vinyl ether with isobutyl vinyl ether. In the copolymerization of p-methylstyrene with styrene or with 2-chloroethyl vinyl ether, the addition of the common-ion salt in a polar solvent shifted the monomer reactivity ratios to those in a less polar solvent. The molecular weight distribution analysis of the copolymer suggested that the addition of the common-ion salt depresses the dissociation of propagating species. Therefore, it was concluded that a propagating species with a different degree of dissociation shows a different relative reactivity towards two monomers. The nature of propagating species was also discussed on the basis of the common-ion effect on the monomer reactivity ratios in various solvents.  相似文献   

15.
The reactivity ratios for the copolymerization of a first‐generation dendronized monomer with styrene and different acrylates are determined. The obtained ratios as well as the copolymer compositions that can be expected are discussed in detail. The influence of the dendron on the polymerization potential of the monomer is estimated by comparing its reactivity to those of linear systems as well as using higher generations of the dendronized monomer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Polylactides, polyglycolide and copolymers based on them, are still gaining interestbecause of the numerous applications in the biomedical and pharmaceutical fieldsl. Theyare usually prepared by bulk homo- and co-polymerizations of lactides, glycolideinitiated with stannous octoate (Snoot,) because Snoot, is a highly efficient commercialcatalyst and a permitted food additive in numerous countriesl-2. However, the propertiesof poly(D,L-lactic acid-co-glycolic acid) (D,L-PLGA) have widely va…  相似文献   

17.
测定了丙烯酰胺与4-乙烯基吡啶共聚反应的竞聚率。用紫外分光光度法测定了不同浓度的4-乙烯基吡啶均聚物的吸光度,从而求出在低转化率不同初始单体组成的共聚物中4-乙烯基吡啶含量。用FR和KT两种作图法及YBR计算法对单体的竞聚率进行计算和比较。结果表明:KT法和YBR法计算法较为准确,4-乙烯基吡啶的竞聚率和丙烯酰胺的竞聚率分别为γrVP=0.636,γAM=0.379。  相似文献   

18.
The rates of free radical copolymerizations at given rates of initiation can be analyzed ideally in terms of monomer feed concentrations and reactivity ratios, propagation rate constants for homopolymerizations of the particular monomers, and an overall rate constant for termination during copolymerization. This model, which is due to Atherton and North, can account for the effects of initiator concentration and viscosity of the polymerization medium on copolymerization rates.

This article reports an empirical formulation for the overall termination rate constant in terms of monomer concentrations and reactivity ratios and a cross-termination factor. The new model accounts for experimental data in the styrene-methyl methacrylate system in which polarity differences between unlike radicals may result in enhanced termination rates. It also predicts observed copolymerization rates of methyl methacrylate-vinyl acetate and styrene-α-methylstyrene mixtures in which polarity effects are absent. The cross-termination factor may be approximated from reactivity ratio data for predictive purposes.  相似文献   

19.
The kinetic behavior of the free-radical polymerization of 2-hydroxy-4-N-methacrylamidobenzoic acid (4-HMA) and 2-hydroxy-5-N-methacrylamidobenzoic acid (5-HMA) in a solution of N,N-dimethylformamide is described. The methacrylic monomers 4-HMA and 5-HMA were isomers in which the phenolic and carboxylic functional groups were in different positions on the side aromatic ring with respect to the methacrylamide group. Semiempirical (AM1 and PM3 treatments) and ab initio (6-31G**) quantum mechanical calculations indicated the existence of intramolecular H-bonding between the phenolic and carboxylic groups. These calculations also indicated a slightly higher reactivity of 4-HMA with respect to 5-HMA under the same experimental conditions as obtained from the frontier orbital interactions between the highest molecular orbital of the monomers and the singly occupied molecular orbital of the radical obtained by the reaction of a methyl radical with the corresponding monomer. Gravimetric study of the free-radical polymerization of 4-HMA and 5-HMA at several temperatures ranging from 50 to 150 °C demonstrated this behavior. The kinetic results obtained and the average molecular weights of the polymers prepared at different temperatures indicated that the monomer 4-HMA had a slightly higher reactivity at low temperatures (50–90 °C), whereas at higher temperatures (120–150 °C), the reactivity of both monomers became similar as a consequence of the “dead-end” radical polymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4528–4535, 1999  相似文献   

20.
In Part I of this series the reactivity ratios of the comonomer pair methyl acrylate-methyl methacrylate were determined with low-conversion bulk polymerizations. It was shown that the binary reactivity ratios of the systems styrene-methyl acrylate, styrene-methyl methacrylate, and methyl acrylate-methyl methacrylate describe composition drift in low-coversion bulk terpolymerizations with these monomers reasonably well. A computer model was developed to simulate the composition drift in emulsion co- and terpolymerizations. The composition drift in two batch emulsion copolymerization systems (styrene-methyl acrylate and methyl acrylate-methyl methacrylate) and one emulsion terpolymerization system (styrene-methyl acrylate-methyl methacrylate) was investigated both experimentally and with the model. Experimental results were compared with model calculations. The copolymer chemical composition distributions (CCD) were determined with gradient polymer elution chromatography (GPEC®). This technique was also used for the first time to obtain information about the extent of composition drift in emulsion terpolymerizations. Cumulative terpolymer compositions were determined with 3H-NMR as a function of conversion and with this information the three-dimensional CCD was obtained. The composition drift was analyzed with respect to free radical copolymerization kinetics (reactivity ratios) and monomer partitioning. It was shown that in most emulsion copolymerizations the composition drift is mainly determined by the reactivity of the monomers and to a lesser extent by monomer partitioning, except in systems where there is a large difference in water solubility. The model predictions for cumulative terpolymer composition as a function of conversion and the three-dimensional terpolymer CCD showed excellent agreement with the experiments. The GPEC® elution chromatogram of the terpolymer was found to be in accordance with the predicted CCD and the experimentally determined CCD. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号