首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, CuI‐ and AgI‐based halide double perovskites have been proposed as promising candidates for overcoming the toxicity and instability issues inherent within the emerging Pb‐based halide perovskite absorbers. However, up to date, only AgI‐based halide double perovskites have been experimentally synthesized; there are no reports on successful synthesis of CuI‐based analogues. Here we show that, owing to the much higher energy level for the Cu 3d10 orbitals than for the Ag 4d10 orbitals, CuI atoms energetically favor 4‐fold coordination, forming [CuX4] tetrahedra (X=halogen), but not 6‐fold coordination as required for [CuX6] octahedra. In contrast, AgI atoms can have both 6‐ and 4‐fold coordinations. Our density functional theory calculations reveal that the synthesis of CuI halide double perovskites may instead lead to non‐perovskites containing [CuX4] tetrahedra, as confirmed by our material synthesis efforts.  相似文献   

2.
陈三平  范广  高胜利 《中国化学》2008,26(2):286-289
以1,2-反式-二(4-吡啶基)乙烯桥连卤化铜分别得到配合物[Cu2(bpe)Cl 2] n (1), [Cu2(bpe)Br2] n (2) 和 [Cu2(bpe)I2] n (3)。通过X-射线单晶衍射法对配合物1的结构进行了研究,晶体学数据:单斜晶系, P 2(1)/c空间群, a = 0.3788(8) nm, b = 1.5059(3) nm, c = 1.0875(2)nm, β = 96.262(4) °, V = 616.5(2)Å3, Z = 2, S = 1.002,最终残差因子( I >2 σ ( I )) R 1 = 0.0288, wR 2 = 0.0579,对于全部数据 R 1 = 0.0509, wR 2 = 0.0615。元素分析及红外光谱分析表明,该类配合物为同晶化合物。另外,通过热重分析对配合物的热稳定性进行了研究。  相似文献   

3.
From solutions of copper iodide and dodecyldimethylsulphonium iodide in acetonitrile, single crystals of [Cu4I4(DodecylMeS)4] ( 1 ) and [Cu3I4(DodecylMeS)3](DodecylMe2S) ( 2 ) could be obtained. Both compounds crystallize in the triclinic crystal system, space group P1¯ ( 1 : a = 957.23(1), b = 967.25(2), c = 3818.38(6) pm, α = 90.3837(6)°, β = 86.4687(7)°, γ = 75.0996(7)°, 2 : a = 874.23(1), b = 979.29(1), c = 4388.75(4) pm, α = 90.4472(3)°, ß = 94.7088(3)°, γ = 116.1162(3)°). 1 consists of tetrahedral Cu4 clusters, which are capped by four iodide ions over the tetrahedral faces. 2 contains trigonal Cu3 clusters, which are coordinated by four iodide ions, one centered over the plane, three bridging over the edges of the Cu3 triangle. In both compounds, the S atoms of (DodecylMeS) ligands coordinate to the Cu atoms. In 2 , a (DodecylMe2S) cation is also present.  相似文献   

4.
Two new Schiff base zinc(II) complexes, [ZnBr2L] (I) and [ZnCl2L] (II), where L is 4-bromo-2-[(3-diethylaminopropylimino)methyl]phenol, were synthesized and characterized by physico-chemical methods and single crystal X-ray diffraction. The crystal of I is monoclinic: space group P21/n a = 7.250 (2), b = 16.136 (3), c = 15.802 (3) Å, β = 90.027 (3)°, V = 1848.6 (7) Å3, Z = 4. The crystal of II is monoclinic: space group P21/n, a = 7.177 (3), b = 15.970 (4), c = 15.689 (3), β = 91.674 (3)°, V = 1797.5 (9) Å3, Z = 4. The Zn atom in each complex is four-coordinated by one phenolate O and one imine N atoms of the Schiff base ligand and two halide atoms, forming a tetrahedral coordination. The urease inhibitory activities of the complexes were evaluated.  相似文献   

5.
Ag/CuI Mixed Occupancy in the Crystal Structures of the Copper(II) Cyanoargentates Cu(NH3)(py)Ag3?xCux(CN)5 · py From pyridine and ammonia containing CuII solutions, to which K[Ag(CN)2] and in part KCu(CN)2/KCN has been added, we obtained single crystals of mixed-valent copper compounds of variable composition Cu(NH3)-(py)Ag3-xCux(CN)5 · py. The phases corresponding to x = 0.39(1) ( I ) and to x = 1.243(6) ( II ) were characterized by X-ray structure analysis. They are isomorphous and crystallize with Z = 4 in the monoclinic space group P21/c. The lattice constants for I [and II , resp.] are: a = 923.8(2) [901.4(2)], b = 1226.8(2) [1227.3(2)], c = 1809.8(4) [1783.5(2)] pm, β = 91.41(3) [91.02(1)]°. The CuII cation shows trigonal bipyramidal [CuN5] coordination, with the neutral ligands in axial positions (mean value Cu? N for II : 201 pm), three N atoms of cyano bridges in equatorial ones (Cu? N: 206 pm). One of these bridges stems from a trigonal unit [AgCN(NC)2], the central atom of which is substituted by CuI to an extent of 39% in I , and completely in II . The two other bridges originate from two [Ag(CN)2]? groups, of which the more bent one may be partially occupied by CuI as well (24% in II ). The units mentioned are connected into meshes of elongated hexagons and further into puckered layers within the (010) plane, interpenetrating each other in pairs. A threedimensional linking of layers occurs by the trigonal Ag/CuI species forming centrosymmetric dimers, in which the metal coordination is completed to tetrahedral by a C-atom of the corresponding neighbouring group and short metal-metal distances of 279.1(3) pm in I and 264.1(1) pm in II appear. Details and relations are discussed.  相似文献   

6.
Two isostructural mononuclear zinc(II) complexes, [ZnLBr2] (I) and [ZnLI2] (II), derived from the Schiff base N-isopropyl-N′-[1-(2-methoxyphenyl)methylidene]ethane-1,2-diamine (L), have been synthesized and characterized by elemental analysis, IR spectra, and X-ray single-crystal diffraction. The crystal of I is monoclinic: space group P21/n, a = 14.476(1) Å, b = 7.327(1) Å, c = 17.528(1) Å, β = 101.153(1)°, V = 1824.0(3) Å3, Z = 4. The crystal of II is monoclinic: space group P21/n, a = 14.482(1), b = 7.329(1), c = 17.528(1)Å, β = 101.195(2)°, V = 1825.0(3)Å3, Z = 4. The Zn atom in each complex is four-coordinated in a tetrahedral coordination, with one imine N and one amine N atoms of L, and two halide atoms. Both complexes and the Schiff base were tested in vitro for their antibacterial activities.  相似文献   

7.
The reaction of 2‐amino‐benzothiazole with allyl bromide resulted in a mixture of 2‐imino‐3‐allyl‐benzothiazole and 2‐imino‐3‐allyl‐benzothiazolium bromide.Using such a mixture and copper(II) chloride in acetonitrile solution in alternating‐current electrochemical synthesis crystals of the [(CuCl)C10H10SN2] ( I ) have been obtained. The same procedure, performed in ethanol solution, has led to formation of [C10H11SN2+]2[Cu2Cl4]2? ( II ). In the same manner the bromine derivative [C10H11SN2+]2[Cu2Br4]2? ( III ) has been synthesized. All three compounds were X‐ray structurally investigated. I :monoclinic space group P21/n, a = 13.789(6), b = 6.297(3), c = 13.830(6) Å, β = 112.975(4)°, V = 1105.6 (9) Å3, Z = 4 for CuCl·C10H10 SN2 composition. Compounds II and III are isomorphous and crystallize in triclinic space group. II a = 7.377(3), b = 8.506(3), c = 9.998(4) Å, α = 79.892(10)°, β = 82.704(13)°, γ = 78.206(12)°, V = 601.9(4) Å3, Z = 1. III a = 7.329(2), b = 8.766(3), c = 10.265(3) Å, α = 79.253(9)°, β = 82.625(9)°, γ = 77.963(9)°, V = 630.9(3) Å3, Z = 1. In the structure I [(CuCl)C10H10SN2] building blocks are bound into infinitive spiral‐like chains via strong N‐H..Cl hydrogen bonds. In the zwitter‐ionic II and III compounds copper and halide atoms form centrosymmetric [Cu2X4]2? anions, which are interconnected via N‐H..X hydrogen bonds into infinite butterfly‐like chains. The strongest Cu‐(C=C) π‐interaction has been observed in structure I , where copper possesses coordination number 3. Increasing copper coordination number to 4 in II as well as replacing chlorine atoms by bromine ones in III suppresses markedly this interaction.  相似文献   

8.
Luminescent cuprous complexes are an important class of coordination compounds due to their relative abundance, low cost and ability to display excellent luminescence. The title ionic trinuclear Cu3I2 complex, tris[μ2‐diphenyl(pyridin‐2‐yl)phosphane‐κ2P:N]di‐μ3‐iodido‐tricopper(I)(3 CuCu) hexafluoridophosphate, [Cu3I2(C39H32NP)3]PF6, conventionally abbreviated as [Cu3I2(Ph2PPy)3]PF6, is described. Each CuI atom is coordinated by two μ3‐iodide ligands and by a P and an N atom from two Ph2PPy ligands, giving rise to a CuI2PN tetrahedral coordination geometry about each CuI centre. The electronic absorption and photoluminescence properties of this trinuclear cluster have been studied on as‐synthesized samples, which had been examined previously by powder X‐ray diffraction. A detailed time‐dependent density functional theory (TD–DFT) study was carried out and showed a green emission derived from a halide‐to‐ligand charge transfer and metal‐to‐ligand charge transfer 3(X+M)LCT excited state.  相似文献   

9.
The reaction between 2,2′-bis(3-aminopyridyl) diselenide (L) and metal transition salts results in the formation of molecular or cluster complexes. The structural elucidation of the synthesized complexes [CuCl2(L)] ( 1 ), [Cu(3-NH2PySeO2)2]·2H2O ( 2 ), [Cu4(3-NH2PySe)4]·dimethylformamide ( 3 ), [CoCl2(L)] ( 4 ), [ZnCl2(L)] ( 5 ), and [Ag6(3-NH2PySe)6] ( 6 ) demonstrates the coordination of nitrogen atoms to CuII, CoII, and ZnII, and that of the selenium atoms to CuI and AgI, which agrees with Pearson’s hard and soft acids and bases (HSAB) theory. Furthermore, the oxidation of selenium with the formation of 3-aminopyridylseleninate [3-NH2PySeO2] bonded to the copper atom was observed in complex 2 . The antimicrobial action of complexes 1 , 2 , 4 , and 5 was evaluated against Mycobacterium fortuitum, Mycobacterium massiliense, and Mycobacterium abscessus. It was observed that all these complexes have potential antimicrobial activity compared with the free ligand and metal salts used in the synthesis.  相似文献   

10.
Quenching of Ru(bpy)32+ electrochemiluminescence (ECL) by Cl?, Br?, and I? ions was studied as a function of halide concentration in a bipolar electrochemical cell. All of the halides investigated showed similar qualitative behavior: above a critical concentration, ECL intensity was found to decrease linearly as the halide ion concentration was increased, due to dynamic quenching of Ru(bpy)32+ ECL. Stern‐Volmer slopes (KSV) of 0.111±0.003, 4.2±0.3, and 6.2±0.3 mM?1 were measured for Cl?, Br? and I?, respectively. The magnitude of KSV correlates with halide ion oxidation potential, consistent with an electron transfer quenching mechanism. Using the bipolar platform described herein, aqueous, halide‐containing solutions could be quantified rapidly using the sequential standard addition method. The lower detection limit is determined by a complex mechanism involving the competitive electrooxidation of halide ions and the ECL co‐reactants, as well as the passivation of the surface of the bipolar electrode, and was found to be 0.20±0.01, 0.08±0.01 and 10±1 mM, respectively, for I?, Br?, and Cl?. The performance of the bipolar ECL quenching assay is comparable to previously published fluorescence quenching methods for the determination of halide ions, while being much simpler and less expensive to implement.  相似文献   

11.
IntroductionAvarietyoffunctionalcoordinationpolymersweresyn thesizedinrecentyearsfortheirdiversifiedstructures1andconsiderableapplicationsinthefieldssuchascatalysis ,2 non linearoptics,3 molecularmagneticmaterias4 andelectriccon ductors .5Frameworksofcoordin…  相似文献   

12.
A three-dimensional (3D) pillared-layer La(III)-Cu(I) heterometallic coordination polymer (HCP) formulated as [La2Cu4I3(Hina)7(H2O)] n (1) (Hina = isonicotinic acid), is synthesized by a hydrothermal reaction of La2O3, CuI, and ina. The crystal structure is determined by single crystal X-ray diffraction. HCP 1 crystallizes in the monoclinic space group P21/c with unit cell parameters: a = 17.0147(3) Å, b = 18.4431(3) Å, c = 16.7487(3) Å, β = 102.469(2)°, V = 5131.84(15) Å3, Z = 4. It features a 3D pillared-layer heterometallic organic framework, where Ln-ina layers are pillared by discrete [Cu8I6(ina)12] units along the direction of the a axis. In addition, the solid-state photoluminescent property is investigated.  相似文献   

13.
Crystals of the copper bromide complexes with N-allylisoquinolinium halides of the composition [C9H7N(C3H5)]2CuIICl2.86Br1.14 (I), [C9H7N(C3H5)]CuIBr2 · H2O (II), and [C9H7N(C3H5)]CuIBr2 (III) are prepared by ac electrochemical synthesis, and their structures are studied by X-ray diffraction analysis (DARCh-1 (for I) and KUMA/CCD (for II and III) diffractometers). The crystals of compound I are monoclinic: space group P21/n, a = 15.053(5) Å, b = 10.486(4) Å, c = 17.179(10) Å, γ = 109.77(3)°, V = 2552(4) Å3, Z = 4. The crystals of complex II are triclinic: space group P $\overline 1 $ , a = 7.040(1) Å, b = 7.610(2) Å, c = 12.460(2) Å, α = 79.54(3)°, β = 86.73(3)°, γ = 89.51(1)°, V = 655.4(2) Å3, Z = 2. The crystals of complex III are monoclinic: space group P21/n, a = 12.799(1) Å, b = 7.692(1) Å, c = 13.491(1) Å, β = 111.08(1)°, V = 1239.3(2) Å3, Z = 4. The structure of compound I is built of the CuIIX 4 2? tetrahedra and N-allylisoquinolinium cations united by the C-H···X contacts into corrugated layers. The crystal structure of π-complex II is formed of dimers of the composition [C9H7(C3H5)]2 Cu 2 I Br4 forming layers in the direction of the z axis due to the C-H···X contacts. An important role in structure formation belongs to water molecules that cross-link the organometallic layers through the O-H···X contacts into a three-dimensional framework. When kept in the mother liquor for 6 months, the crystals of compound II transformed into crystals of compound III, whose structure consists of {[C9H7(C3H5)]2Cu 2 I Br4} n columns united through the C-H···Br contacts (H···Br 2.84(3)?2.92(4) Å) into a three-dimensional framework.  相似文献   

14.
Utilizing a new 20-membered macrocyclic Schiff base ligand with two coordination sites formed from the [2+2] condensation of 1,3-diaminopropane and benzene-1,3-dicarboxaldehyde in the presence of CuX (X = Cl, Br, I) salts, air-stable dicopper(I) complexes were synthesized in acetonitrile, intramolecularly linked via two halide groups, and characterized by different physico-chemical techniques. The single crystal X-ray diffraction technique indicates these complexes consist of two N2X2 donor sets that have distorted tetrahedral coordination environments around the copper(I) ions. In these halogen-bridged binuclear Cu2LX2 systems the Cu?Cu separation can be controlled, as this distance is reduced on increasing the halide size and hence the X?X repulsion, with the rigidity of the macrocycle playing a significant role.  相似文献   

15.
The alkylation of ethylenediamine with allyl bromide in the presence of a fourfold (with respect to ethylenediamine) molar amount of NaHCO3 in acetone with an ethanol admixture (15: 1) affords LBr2 · 2H2O (I), where L2+ is the N,N,N,N′,N′,N′-hexaallylethylenediaminium cation. Single crystals of complexes L[CuII(Br0.45Cl3.55)] (II), L[Cu4I(Br4.55Cl1.45)] (III), and L[Cu4IBr6] (IV) are prepared by ac electrochemical synthesis from an ethanolic solution of LBr2 · 2H2O, CuCl2 · 2H2O (or CuBr2) at copper wire electrodes. The crystal structures of compounds I–IV are determined by X-ray diffraction analysis. The crystals of complex I are monoclinic: space group P21/n, a = 8.544(3), b = 10.404(3), c = 13.350(4) ?, β = 97.29(3)°, V = 1177.2(6) ?3, Z = 2. The bromine anions in compound I are bonded to the L2+ cations and water molecules through hydrogen contacts (E)H…Br (E = O, C) of 2.57(3)–2.86(3) ?. The crystals of compounds II–IV are triclinic: space group P . For II: a = 8.762(4), b = 9.163(4), c = 16.500(6) ?, α = 95.62(4)°, β = 96.39(4)°, γ = 111.46(4)°, V = 1211.4(9) ?3, Z = 2; for III: a = 9.074(4), b = 9.435(4), c = 9.829(5) ?, α = 116.12(4)°, β = 104.14(4)°, γ = 100.22(4)°, V = 692.3(6) ?3, Z = 1; for IV isostructural III: a = 9.084(4), b = 9.404(4), c = 9.869(4) ?, α = 116.31(3)°, β = 104.00(3)°, γ = 100.37(3)°, V = 692.1(5) ?3, Z = 1. Unlike the isolated tetrahedral CuX42− anion in structure II, an original chain anion (Cu4X62−) n is observed in the structures of π complexes III and IV. Original Russian Text ? M.M. Monchak, A.V. Pavlyuk, V.V. Kinzhibalo, M.G. Mys’kiv, 2009, published in Koordinatsionnaya Khimiya, 2009, Vol. 35, No. 6, pp. 414–419.  相似文献   

16.
One novel heterometallic trinuclear complex of macrocyclic oxamide [Ni(CuL)2(HBTC)H2O] (I) (H2L = 2,3-dioxo-5,6,14,15-dibenzo-1,4,8,12-tetraazacyclopentadeca-7,13-dien; H3BTC = 1,3,5-benzenetricarboxylic acid) has been solvothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, XRD, and single-crystal X-ray diffraction. The crystals crystallize in the monoclinic system, space group P21/c, a = 11.435(3), b = 20.646(5), c = 18.430(5) Å, β = 94.131(4)°. The structure of I has oxamido-bridged trinuclear [Cu 2 II NiII] units and consists of two-dimensional supramolecular architecture formed by strong intermolecular hydrogen bonds. Furthermore, the magnetic properties of complex I was investigated and discussed in detail.  相似文献   

17.
Preparation and Crystal Structure of CsTe4 CsTe4 results from a melting reaction at 570°C in sealed quartztubes. The starting materials Cs and Te in the molar ratio 1:4 are produced in a first step by controlled decomposition of the CsN3 from mixtures of CsN3 and Te (1:4) at 350°C. CsTe4 is monoclinic, space group P21/c, with a = 7.857(1) Å, b = 7.286(1) Å, c = 14.155(2) Å, β = 93.83(1)°, and Z = 4. The tellurium atoms form a two-dimensional puckered layer built of from pseudo-trigonal-bipyramidal, T-shaped units Te4?. The central tellurium atom of this unit may be considered as a pseudo iodine. The compound is compared with other tellurides MTen having some like that unexpected principles of connection.  相似文献   

18.
Alkylation of ethylenediamine with allyl bromide in the presence of NaHCO3 in benzene-ethanol and acetone-ethanol gave N,N,N′,N′-tetraallylethylenediamine L4 and N,N,N,N′,N′-pentaallylethylenediaminium bromide (L5(H+)Br2), respectively. The ac electrochemical synthesis at copper wire electrodes in solutions of copper(II) halide and an appropriate ligand yielded single crystals of Cu(I) complexes with ethylenediaminium ([L0(H+)2]0.5CuCl2 (I) and [L0(H+)2]0.5CuBr1.67Cl0.33 (II)) and its N-allyl derivatives N,N,N′,N′-tetraallylethylenediaminium ([{L4(H+)2}0.5Cu2Cl3] (III)) and N,N,N,N′,N′-pentaallylethylenediaminium ([L5(H+)Cu4Br6] (IV)). The crystal structures of complexes I–IV were determined by X-ray diffraction. The isostructural crystals of complexes I and II are triclinic, space group P $ \bar 1 $ , Z = 2. For I: a = 5.936(3), b = 6.387(3), c = 7.126(4) Å, α = 67.82(4)°, β = 72.98(4)°, γ = 67.55(4)°, V = 227.7(2) Å3. For II a = 6.110(3), b = 6.657(3), c = 7.309(3) Å, α = 68.40(3)°, β = 72.38(3)°, γ = 67.23(3)°, V = 250.4(2) Å3. In structures I and II, the organic cations are between infinite anionic chains (Cu 2 ? ) n . The crystals of π-complex III are triclinic, space group P $ \bar 1 $ , a = 6.851(4), b = 8.729(4), c = 9.960(4) Å, α = 98.25(3)°, β = 102.29(3)°, γ = 107.30(3)°, V = 541.8(5) Å3, Z = 2. In structure III, all the four allyl groups are π-coordinated by the metal atoms of four discrete anions Cu4Cl 6 2? . The crystals of π-complex IV are monoclinic, space group C2/c, a = 15.228(5), b = 17.095(6), c = 20.182(6) Å, β = 92.43(4)°, V = 5249(3) Å3, Z = 8. Only two of five allyl groups at the same N atom are coordinated by copper(I) atoms. Structure IV contains a complex inorganic fragment of the formula (Cu4Br 6 2? ) n .  相似文献   

19.
The Eschweiler-Clarke reaction of ethylenediamine with formaldehyde and formic acid yielded N,N,N′,N′-tetramethylethylenediamine, which was alkylated with allyl chloride or allyl bromide to give the corresponding N,N′-diallyl-N,N,N′,N′-tetramethylethylenediaminium (L2+) dihalides. In methanolic solutions of copper(II) halide and an appropriate ligand, ac electrochemical synthesis with copper wire electrodes afforded single crystals of Cu(I) complexes with L2+: [L0.5CuCl2] (I), [L0.5CuCl0.72Br1.28] (II), and [L0.5CuBr2] (III). The crystal structures of complexes I–III were determined by X-ray diffraction study. The isostructural crystals of I and II are monoclinic, space group P21/n, Z = 4. For I: a = 7.632(4) Å, b = 11.318(5) Å, c = 10.635(5) Å, β = 98.551(7)°, V = 908.4(7) Å3. For II: a = 7.7415(7) Å, b = 11.4652(9) Å, c = 10.7267(10) Å, β = 98.351(4)°, V = 942.0(2) Å3. The organic cation L2+ acts as a bridge linking a pair of separate cuprous halide fragments Cu2X4. Although being isostoichiometric with I and II, complex III has a different structure. The crystals of III are monoclinic, space group P21/c, a = 6.519(2) Å, b = 9.060(3) Å, c = 16.284(6) Å, β = 97.219(4)°, V = 954.2(6) Å3, Z = 4. In structure III, the inorganic fragment forms infinite polymer chains (CuBr 2 ? ) n . The organic and inorganic parts are held together only by electrostatic interactions. Structures I–III are stabilized by hydrogen bonds (C)H…X (2.6–2.9 Å).  相似文献   

20.
(O,O′)-Diorganodithiophosphatophenyltellurium(II)- and Tris[(O,O′)-diorganodithiophosphato]phenyltellurium(IV) Compounds; Crystal Structure of Tris[(O,O′)-diphenyldithiophosphato]phenyltellur(IV) The title compounds are available by reaction of trichlorophenyltellurium(IV) respectively iodophenyltellurium(II) with the sodium or ammonium salts of (O,O′)-diorganodithiophosphorus acids in various solvents. The resulting tellurium(IV) compounds have a pronounced tendency towards reductive elimination of bis[(O,O′)-diorganothiophosphoryl]disulfanes [S2P(OR)2]2 in solution. In contrast, the tellurium(II) compounds are stable, although they are disintegrated to diphenylditellane and [S2P(OR)2]2 on prolonged standing in chlorinated hydrocarbons. Crystals of tris[(O,O′)-diphenyldithiophosphato]phenyltellurium(IV) are monoclinic (space group P21/c) with the cell constants: a = 1 039.2(1), b = 1 037.9(3), c = 4 205.0(1) pm, β = 95.273(1)°, V = 4 516.42(9)X106 pm3, Z = 4. The compound appears to be monomeric in the solid state forming a distorted pentagonal bipyramid. The stereochemical influence of the lone pair of electrons causes the axial (i. e. C1? Te? S4) angle to be 156.6(1)° rather than the theoretical 180°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号