首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The laser-ion beam photodissociation for [C4H4]+˙ ions produced from a variety of precursors has been studied. Based on the data it is apparent that two structurally distinct forms of the [C4H4]+˙ ion are produced by fragmentation of larger systems. The relative population of the various structural forms is very dependent on the internal energy of the fragmenting ion, with 1-buten-3-yne [C4H4]+˙ ions being favored at low internal energies. As the internal energy of the reactant ion is increased, the relative population of butatriene [C4H4]+˙ ions increases. The laser-ion beam photodissociation technique is able to selectively sample these two structural forms.  相似文献   

2.
The mass spectra of diethyl phenyl phosphates show substituent effects with electron-donating groups favouring the molecular ion M+˙, and the [M? C2H4]+˙, [M – 2C2H4]+˙ and [XPhOH]+˙ ions. The [PO3C2H6]+ (m/z 109) and [PO3H2]+ (m/z 81) ions are favoured by electron-withdrawing groups. Results suggest that the formation of the [XPhC2H3]+˙ ion involves rearrangement of C2H3 to the position ortho to the phosphate group. Ortho effects are also observed.  相似文献   

3.
Substituents have been found to have a marked influence on the metastable ion decompositions and collisionally activated (CA) fragmentations of the M+˙ ion of a number of 1,2,3-triarylpropen-1-ones. An attempt has been made to confirm the structures of the rearrangement ions, [C14H10]+˙, [C13H11]+˙, [C13H9]+ and [C12H8]+˙ by comparison of their CA spectra with those of the corresponding ions produced from reference compounds. The results imply that [C14H10]+˙ and the M+˙ ions of phenanthrene and diphenylacetylene have a common structure, [C13H9]+ and the fluorenyl cation have a common structure and [C12H8]+˙ and biphenylene molecular ion have a common structure. The available data indicate that the ion at m/z 167 consists of a mixture of structures, likely possibilities being diphenylmethyl, phenyltropylium and dihydrofluorenyl cations.  相似文献   

4.
The photodissociation of [C4H4]+˙ fragment ions at the ion cyclotron resonance time-scale competes with relaxation of the internal energy by infrared emission. As a result the fraction of photodissociating ions increases with light intensity. The experiments indicate that [C4H4]+˙ from benzene and 1,5-hexadiyne consists of a mixture of 60% vinyl acetylene ions, 10% butatriene ions and 30% cyclic ions. This confirms previous conclusions from studies of the ion-molecule reactions of [C4H4]+˙ with benzene.  相似文献   

5.
Charge exchange of neutral C3F6 by a variety of atomic and molecular ions in the 1 to 25 eV range of collision energies is used to characterize the energies associated with formation of [C3F6]+˙. The internal energy of the nascent [C3F6]+˙ ion, assessed by observing the degree to which it fragments, increases with the recombination energy of the charge-exchange reagent. The existence of excited states of the reagent ions is identified from the fragmentation behaviour of [C3F6]+˙ in the cases of [CS2]+˙, NO+, O2+˙, [NH3]+˙ and possibly [CH4]+˙. In addition, the data confirm that the [C3F6]+˙ parent ion fragments from both the ground state and a long-lived isolated electronic state. The latter is populated by near-resonant charge transfer. Translational excitation contributes relatively little to internal excitation of the charge-exchanged product ion and even less in the case of the isolated state.  相似文献   

6.
The electron impact and collision-induced dissociation mass spectra of cis- and trans-annulated bicyclo[4.3.0]nona-3,7-dienes differ in their relative abundances of [C5H6]+˙ fragments formed by the retro-Diels-Alder decomposition. The formation of [C5H6]+˙ is not preceded by hydrogen migration in the short-lived and long-lived molecular ions. The appearance energy of [C5H6]+˙ from both annulation isomers is identical within experimental error: AEcis([C5H6]+˙)=10.56±0.10 eV and AEtrans([C5H6]+˙)=10.54±0.15 eV. The barrier to the retro-Diels-Alder fragmentation lies 68–76 kJ mol?1 above the thermo-chemical threshold corresponding to [C5H6]+˙ + C4H6. Investigation of the two-dimensional reaction coordinate by the Topological Molecular Orbital treatment shows that the lowest energy path for the retro-Diels-Alder reaction involves a two-step dissociation of the C(5)? C(6) and C(1)? C(2) bonds in the molecular ion, the latter step overcoming a barrier, calculated as 80 kJ mol?1 above the thermochemical threshold. The stereochemical difference between the geometric isomers is due to stereoelectronic assistance of the π orbitals of the cis-annulated isomer in the cleavage of the C(5)? C(6) bond. Other mechanisms of the retro-Diels–Alder reaction are discussed.  相似文献   

7.
The use of kinetic energy release measurements in the structural characterization of ions formed in the mass spectrometer and in the determination of fragmentation mechanisms is demonstrated. In combination with information on the mode of energy partitioning in some of these reactions this allows the following conclusions: (i) The metastable [C7H8]8˙ ions formed from toluene, cyclohepatatriene, n-butylbenzene, the three methyl anisoles, methyl tropyl ether and benzyl methyl ether all undergo loss of H˙ from a common structure. (ii) The metastable [C7H7]+ ions generated from the same sources and from benzyl bromide, benzyl alcohol, p-xylene and ethylbenzene appear to undergo loss of acetylene from both the benzylic and the tropylium structures. (iii) The metastable [C7H7OCH3]+˙ ether molecular ions undergo loss of CH3˙ by two types of mechanism, simple cleavage to give the aryloxy cation (not observed for benzyl methyl ether) and a rearrangement process which appears to lead to protonated tropone as the product. (iv) Loss of formaldehyde from the metastable [C7H7OCH3]+˙ molecular ions involves hydrogen transfer via competitive 4- and 5-membered cyclic transition states in the case of the anisoles and in the case of methyl tropyl ether, while for benzyl methyl ether, hydrogen transfer in the nonisomerized molecular ion occurs via a 4-membered cyclic transition state to yield the cycloheptatriene molecular ion.  相似文献   

8.
The losses of methyl and ethyl through the intermediacy of the [2-butanone]+˙ ion are shown to be the dominant metastable decomposition of 14 of 19 [C4H8O]+˙ ions examined. The ions that decompose via the [2-butanone]+˙ structure include ionized aldehydes, unsaturated and cyclic alcohols and enolic ions. [Cyclic ether]+˙ [cyclopropylmethanol]+˙ and [2-methyl-1-propen-1-ol]+˙ ions do not decompose through ionized 2-butanone. The rearrangements of various [C4H8O]+˙ ions the the 2-butanone ion were investigated by means of deuterium labeling. Those pathways involve up to eight steps. Ions with the oxygen on the end carbon rearrange to a common structure or mixture of structures. Those ions which ultimately rearrange to the [2-butanone]+˙ ion then undergo oxygen shifts from the terminal to the second and third carbons at about equal rates. However, this oxygen shift does not precede the losses of water and ethylene. Losses of water and ethylene were unimportant for ions with the oxygen initially on the second carbon. Ionized n-butanal and cyclobutanol, but not other [C4H8O]+˙ ions, undergo reversible hydrogen exchange between the oxygen and the terminal carbon. Rearrangement of ionized n-butanal to the [cyclobutanol]+˙ ion is postulated.  相似文献   

9.
On the basis of unimolecular and collisionally activated decompositions, as well as their charge stripping behaviour, [C7H8]+˙ and [C7H8]2+ ions from a variety of precursors have been studied. In particular, structural characteristics of molecular ions of toluene, cycloheptatriene, norborna-2,5-diene and quadricyclane have been compared to those of [C7H8]+˙ and [C7H8]2+ rearrangement fragment ions obtained from n-butylbenzene, 2-phenylethanol and n-pentylbenzene. Severe interferences from [C7H7]2+˙ ion fragmentations have been observed and rationalized.  相似文献   

10.
Unimolecular and collision-induced decomposition products of [C4(C6H5)2(C6H4F)2]+˙ generated from four unsymmetrical sources include [C14H10]+˙ and [C14H8F2]+˙ and so provide evidence for a tetrahedral intermediate. Other decompositions show substantial influence of the position of the ρ-fluorophenyl ring on ion energy distributions. This influence may be related to the reported absence of peaks diagnostic for the tetrahedral intermediate from the spectrum of the equivalent ion from the appropriate 13C-labeled analog. Alternatively the difference in spectra can be correlated with lifetimes of ions.  相似文献   

11.
The mass spectra of a series of β-ketosilanes, p-Y? C6H4Me2SiCH2C(O)Me and their isomeric silyl enol ethers, p-Y? C6H4Me2SiOC(CH3)?CH2, where Y = H, Me, MeO, Cl, F and CF3, have been recorded. The fragmentation patterns for the β-ketosilanes are very similar to those of their silyl enol ether counterparts. The seven major primary fragment ions are [M? Me·]+, [M? C6H4Y·]+, [M? Me2SiO]+˙, [M? C3H4]+˙, [M? HC?CCF3]+˙, [Me2SiOH]+˙ and [C3H6O]+˙ Apparently, upon electron bombardment the β-ketosilanes must undergo rearrangement to an ion structure very similar to that of the ionized silyl enol ethers followed by unimolecular ion decompositions. Substitutions on the benzene ring show a significant effect on the formation of the ions [M? Me2SiO]+˙ and [Me2SiOH]+˙, electron donating groups favoring the former and electron withdrawing groups favoring the latter. The mass spectral fragmentation pathways were identified by observing metastable peaks, metastable ion mass spectra and ion kinetic energy spectra.  相似文献   

12.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

13.
The charge exchange mass spectra of a selection of C5-C7 ketones have been measured using [CS2]+˙, [COS]+˙ and [N2O]+. as reagent ions. The low energy charge exchange with [CS2]+˙ or [COS]+˙ provides simple primary ion mass spectra, which readily permit structure elucidation in contrast to metastable ion spectra. In several cases, isomer distinction is easier from the charge exchange mass spectra than from the electron impact mass spectra. The energy transfer from [N2O]+˙ is sufficiently high for complex spectra resembling electron impact mass spectra to be obtained.  相似文献   

14.
Charge stripping (collisional ionization) mass spectra are reported for isomeric [C5H8]+˙ and [C3H6]+˙ ions. The results provide the first method for adequately quantitatively determining the structures and abundances of these species when they are generated as daughter ions. Thus, loss of H2O from the molecular ions of cyclopentanol and pentanal is shown to produce mixtures of ionized penta-1,3- and -1,4-dienes. Pent-1-en-3-ol generates [penta-1,3-diene]+˙. [C3H6]+˙ ions from ionized butane, methylpropane and 2-methylpropan-1-ol are shown to have the [propene]+˙ structure, whereas [cyclopropane]+˙ is produced from ionized tetrahydrofuran, penta-1,3-diene and pent-1-yne.  相似文献   

15.
The collisional activation (CA) mass spectra of the two isomeric [C7H7]+ ions, benzyl and tropyl, have been reassessed. The structure-characteristic feature of their CA mass spectra, the m/z 77:74 abundance ratio, has been confirmed as 3.15 ± 0.2 for benzyl cations and lowered to 035 ± 03 for tropyl ions. Benzyl–tropyl cation mixture analyses were made and were in general agreement with earlier CA results, but still disagree with the results of ion cyclotron resonance experiments. The behavior of toluene molecular ions close to their dissociation threshold to [C7H7]+ + H˙ was examined; for metastable [C7H8]+˙ ions an approximately 55:45 benzyl:tropyl ratio was found. Observations are discussed in relation to photoionization and photoelecrron-photoionization coincidence studies, both of which predict high tropyl ion contents at low energies. However, at the lowest energies attainable in this study the benzyl content failed to fall below 50% and it is concluded that toluene molecular ions do not generate tropyl cations at their dissociation limit.  相似文献   

16.
The mass spectral fragmentation of trihalogenated methyl esters, formed in the reactions of monochlorinated methyl propenoates and 2-butenoates with Cl2, BrCl and Br2, have been investigated. In most cases α-cleavage gives the base peak, [COOCH3]+, the peaks originating from the subsequent losses of one or two halogen atoms also being abundant. The primary loss of a halogen atom is more prominent in the C4 derivatives, Br˙ and Cl˙ being preferentially lost from the 2- and 3-positions, respectively. The McLafferty rearrangement yields in one case the base peak; the 2-halo compounds could in general be distinguished by that fragmentation. Typical for all 2-bromo-substituted methyl butanoates studied is the base peak, [C3H3]+, at m/z 39, and for some 3-halo compounds the peaks at m/z 95, [C2H4ClO2]+ and 139, [C2H4BrO2]+.  相似文献   

17.
An ion–neutral complex is a non-covalently bonded aggregate of an ion with one or more neutral molecules in which at least one of the partners rotates freely (or nearly so) in all directions. A density-of-states model is described, which calculates the proportion of ion–neutral complex formation that ought to accompany simple bond cleavages of molecular ions. Application of this model to the published mass spectrum of acetamide predicts the occurrence of ions that have not hitherto been reported. Relative intensities on the order of 0.1 (where the abundance of the most intense fragment ion = 1) ere predicted for [M – HO]+ and [M – CH4]+˙ ions, which have the same nominal masses as the prominent [M – NH3]+˙ and [M – NH2]+ fragments. High-resolution mass spectrometric experiments confirm the presence of the predicted fragment ions. The [M – HO]+ and [M – CH4]+˙ fragments were observed with relative abundances of 0.02 and 0.04, respectively. Differences between theory and experiment may be ascribed to effects of competing distonic ion pathways.  相似文献   

18.
It is shown by ion cyclotron resonance measurements that ion/molecule reactions, leading to substitution or reduction product ions from chloro- and nitrobenzene with the title amines, are those between the molecular ions [RNH2]+ or [C6H5X]+˙ and their respective counterparts C6H5X or RNH2. The protonated reagent gas ions [RNH3]+ are not involved in these reactions. In the case of nitrobenzene, adduct ions [C6H5NO2·RNH3]+ do not decompose within the time scale of the measurements. The results obtained are compared with those found under chemical ionization conditions.  相似文献   

19.
Specific 13C-labelling in the side-chain of 1-phenylethylbromide and of styrene shows that it is not necessary to assume eight-membered ring structures for the [C8H9]+- and [C8H8]++˙-ions to explain the almost complete randomization of all hydrogen atoms, as might be concluded from D-labelling data. It is now suggested that the eight-membered ring is predominantly present in [C8H9]+ and [C8H8]+˙ ions of low internal energy. In particular this appears to apply to styrene, which generates a cyclooctatetraene molecular ion with the original side-chain carbon atoms still linked together, as shown by 13C-labelling.  相似文献   

20.
The substituent effect on the single and double hydrogen atom transfer reactions in para-substituted benzoic acid isobutyl esters has been investigated by electron impact mass spectrometry. Electron-donating substituents favour formation of the [M? C4H8]+˙ ion generated by single hydrogen atom transfer reaction (McLafferty rearrangement), whereas electron-withdrawing substituents favour formation of the [M? C4H7]+ ion generated by double hydrogen atom transfer reaction. In the case of the latter compounds, the m/z56 ([C4H8]+˙) ion, which is generated by single hydrogen atom transfer reaction with charge migration, is very intense, while in the former compounds, the m/z56 ion is very weak. These observations can be reasonably explained on thermochemical grounds based on the sum of the standard heats of formation of the fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号