首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of oxygen on the liquid-phase polymerization of vinyl chloride at 55°C in the presence of an added initiator, bis(4-tert-butylcyclohexy1) peroxydicarbonate, (Perkadox 16), have been studied by tumbled dilatometry. A conventional kinetic scheme involving a predominant cross-termination reaction is proposed to explaine the dependence of the induction period on initial oxygen concentration and initiator concentration. The degree of conversion of the initial oxygen to peroxidic compounds did not exceed 30% by weight under any experimental conditions employed, and the existence of other oxidation products such as formaldehyde, carbon monoxide, and methanol has been demonstrated. Radical decomposition reactions may produce some of the oxidation products. At 55°C, the average velocity constant for decomposition of vinyl chloride polyperoxides in dichloromethane solution was 8 × 10?5 sec?1 compared with 6.6 × 10?5 sec?1 for Perkadox 16. Perkadox 16 has been used as an initiator in a dilatometric study of the homogeneous polymerization of styrene at 60°c. Molecular weights of the polymers were determined viscometrically or by the use of gel-permeation chromatography. The results indicate that no transfer to initiator occurs in this systems.  相似文献   

2.
Cationic polymerization of 2-vinyloxyethyl phthalimide ( 1 ) in CH2Cl2 at ?15°C with hydrogen iodide/iodine (HI/I2) as initiator led to living polymers of a narrow molecular weight distribution (M?w/M?n = 1.1–1.25). The number-average molecular weight of the polymers was in direct proportion to monomer conversion and could be controlled in the range of 1000–6000 by regulating the 1 /HI feed ratio. However, when a fresh monomer was supplied to the completely polymerized reaction mixture, the molecular weight of the polymers was not directly proportional to monomer conversion. The polymerization of 1 by boron trifluoride etherate (BF3OEt2) in CH2Cl2 at ?78°C gave polymers with relatively high molecular weight (M?w > 20,000) and broad molecular weight distribution (M?w/M?n ~ 2). The HI/I2-initiated polymerization of 1 was an order of magnitude slower than that of ethyl vinyl ether, probably because of the electron-withdrawing phthalimide pendant. Hydrazinolysis of the imide functions in poly( 1 ) gave a water-soluble poly(vinyl ether) ( 3 ) with aliphatic primary amino pendants.  相似文献   

3.
Ring-opening polymerization of 1,5-dioxepan-2-one initiated by 1,1,6,6-tetra-n-butyl-1,6-distanna-2,5,7,10-tetraoxacyclodecane was carried out in chloroform, dichloromethane, or 1,2-dichloroethane. Effects of reaction temperature, solvent, and monomer-to-initiator ratio were investigated. Polymerization kinetics showed a first-order dependence on the monomer for polymerization in chloroform and dichloromethane at 40°C. The kinetic order with respect to the initiator were a first order when dichloromethane was used as the solvent, the order in initiator changed, depending on the initiator concentration when chloroform was used. A maximum in molecular weight was observed at 40°C when chloroform was used as the solvent. The change of solvent did not markedly alter the polymerization rate or the molecular weight of the polymers prepared, as expected from the coordination insertion mechanism. Depolymerization of the polymers formed was observed when the reaction was allowed to continue after complete monomer conversion in chloroform as reaction medium at 40°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3407–3417, 1999  相似文献   

4.
Radical polymerization of 2-methyl-5-ethynylpyridine (MEP) and the structure and some properties of phenylacetylene and pentafluorophenylacetylene polymers were investigated. As the first step in polymerization of MEP in the presence of azo-1-cyclohexylcarboxylic acid dinitrile at 94-115°C the monomer conversion is proportional to the quantity of decomposed initiator: 1 mole of initiator causes transformation of 5-7 mole of monomer. At a high degree of polymerization the yield of polymer is not proportional to the initial initiator concentration. The products generated in MEP polymerization initiated thermally or by azo compounds were investigated by means of gel-permeation chromatography, ozonation, 1H-NMR, IR, and UV spectroscopy. Initiation with azo compounds afforded cyclic trimer (tripicolylbenzene) and a fraction with a number average molecular weight Mn of 1550. Thermal polymerization yielded the dimer (picolyl-substituted quinoline or isoquinoline), tripicolylbenzene, hexaraer, and fractions with Mn = 1500 and 1800. Composition and properties of the polymerization products enable one to assume the presence of poly-MEP hexadiene rings in the main chain. Formation of cyclodiene structures by facile aromatization in the course of arylacetylenes polymerization was confirmed by investigations of the structure and some properties of polyphenylacetylenes and polypentafluoro-phenylacetylenes. A mechanism of radical polymerization of arylacetylenes is proposed.  相似文献   

5.
Quasiliving carbocationic polymerization of methyl vinyl ether (MVE) was achieved with the p-dicumyl chloride (p-DCC)/AgSbF6 initiator system by the slow and continuous monomer-addition (quasiliving) technique. A polar solvent (CH2Cl2) and a low reaction temperature (-70°C) were optimum for the quasiliving MVE polymerization. Under these conditions, the number-average molecular weight (M n) of poly(MVE) increased linearly with the cumulative weight of added monomer (WMVE), and linear M n versus WMVE plots passed through the origin. M n's were inversely proportional to the initial initiator (p-DCC) concentration. Reactions in a nonpolar solvent (toluene) at -70°C or in a polar solvent (CH2Cl2) at ?30°C resulted in deviations from these quasiliving characteristics. Block polymerization of MVE from quasiliving poly(isobutyl vinyl ether) dications by the quasiliving technique (p-DCC/AgSbF6 initiator, CH2Cl2 solvent,(-70°C) led to novel isobutyl vinyl ether (IBVE)-MVE block polymers in high yield (>93 wt%) and at high blocking efficiency. The block polymers, most likely poly(MVE-b-IBVE-b-MVE), having M n = 10,900–14,000 [M n(center block) = 6,200–9,0001, were soluble in n-heptane and insoluble in water, and gave hazy homogeneous solutions when dissolved in methanol at room temperature.  相似文献   

6.
Vinyl chloride was polymerized at 59–92% of saturation pressure in a water-suspended system at 45–65°C with an emulsion poly(vinyl chloride) (PVC) latex as a seed. A water-soluble initiator was used in various concentrations. The monomer was continuously charged as vapor from a storage vessel kept at lower temperature. Characterization included determination of molecular-weight distribution and degree of long-chain branching by gel permeation chromatography (GPC) and viscometry, thermal dehydrochlorination, and microscopy. The polymerization rate decreases with decreasing pressure but is reasonable even at the lowest pressure. The molecular weight decreases with decreasing pressure and increasing initiator concentration and also with increasing polymerization temperature, if the initiator concentrations are chosen to give a constant initiator radical concentration. The degree of long-chain branching increases with increasing initiator concentration and decreasing monomer pressure but is unaffected by the polymerization temperature, if the initiator radical concentration is kept constant. The thermal stability decreases with decreasing M n, while the degree of long-chain branching has only a minor influence. The most important factor in the system influencing the molecular parameter is the monomer accessibility.  相似文献   

7.
Vinyl chloride was polymerized at 53–97% of the saturation pressure in a water-suspended system at 55°C with an emulsion PVC latex as seed. A water-soluble initiator was used in various concentrations. The monomer was continuously charged as vapor from a storage vessel kept at lower temperature. Characterization included determination of molecular weight distribution and degree of long-chain branching by gel chromatography and viscometry and by thermal dehydrochlorination. To avoid diffusion control intense agitation was necessary. At a certain conversion, aggregation of primary particles resulted in restricted polymerization rate. Before aggregation, formation of new particles did not occur as the number of particles was high enough to ensure capture of all oligoradicals. The kinetic equation accepted for ordinary emulsion polymerization of vinyl chloride was qualitatively found to be valid after the pressure drop as well. Decreased termination rate may result in increased polymerization rate at reduced monomer concentration, i.e., a gel effect, especially at low particle numbers and high polymer contents. The molecular weight decreased with decreasing monomer concentration. This is in accordance with the new mechanism suggested for chain transfer to monomer starting with occasional head-to-head additions.  相似文献   

8.
Homopolymerizations of styrene (Sty) and α-methylstyrene (AMS) in liquid sulfur dioxide were carried out in the temperature range from ?10°C to ?78°C, using m-chloroperbenzoic acid as initiator. It is shown, through the effect of initiator concentration, temperature, and times of reaction on the conversion and molecular weight of the polymers, that AMS is more reactive than Sty because it requires a smaller amount of initiator for the same conversion to be reached, although the molecular weight of the resulting polymer is lower. A linear relationship has been observed for Sty between the degree of polymerization and the initiator concentration. Within the experimental conditions employed, the presence of polysulfones has been discarded by elemental analysis. The polymerization reactions are considered to be cationic in mechanism.  相似文献   

9.
Poly-α-chloroacrylonitrile, which may be regarded as a hybrid of poly(vinyl chloride) and polyacrylonitrile, is, like these polymers, insoluble in its own monomer. Its bulk polymerization is thus heterogeneous, showing abnormal kinetic features by comparison with homogeneous polymerizations. The polymerization exhibits autocatalytic properties. The initiator exponents at 0 and 5% polymerization are 0.45 and 0.44, respectively, and the overall energy of activation is 23.0 ± 2 Kcal./mole. There is no significant change in molecular weight with catalyst concentration in the range 0.057–0.90% nor with conversion up to 12%, but the reaction is accelerated by addition of polymer. Bulk polymerization results in colored products, the color deepening with conversion. These results have been compared with those of Bamford and Jenkins for acrylonitrile and Bengough and Norrish for vinyl chloride and are found to be in closer accord with the latter. They can be accounted for satisfactorily by Bengough and Norrish's suggestion that transfer occurs between growing polymer radicals and dead polymer molecules, the radicals thus formed on the surface of the polymer being removed by transfer to monomer.  相似文献   

10.
The polymerization of acrylamide has been studied in ethanol at 80°C with 2,2′-azobisisobutyronitrile (AIBN) as the initiator, and also in water at 60°C with 4,4′-azobis-4-cyanopentanoic acid (ACV) as the initiator. For the first system, it was found, approximately, that the well defined in duction period showed an inverse dependence on both the initial monomer and initiator concentrations, but was directly proportional to the square root of the initial oxygen concentration. For the second system, the rate of oxygen uptake was approximately directly proportional to the monomer and initiator concentration but independent of the oxygen concentration. The results obtained for these two systems are compared.  相似文献   

11.
To study the possibility of living cationic polymerization of vinyl ethers with a urethane group, 4‐vinyloxybutyl n‐butylcarbamate ( 1 ) and 4‐vinyloxybutyl phenylcarbamate ( 2 ) were polymerized with the hydrogen chloride/zinc chloride initiating system in methylene chloride solvent at ?30 °C ([monomer]0 = 0.30 M, [HCl]0/[ZnCl2]0 = 5.0/2.0 mM). The polymerization of 1 was very slow and gave only low‐molecular‐weight polymers with a number‐average molecular weight (Mn) of about 2000 even at 100% monomer conversion. The structural analysis of the products showed occurrence of chain‐transfer reactions because of the urethane group of monomer 1 . In contrast, the polymerization of vinyl ether 2 proceeded much faster than 1 and led to high‐molecular‐weight polymers with narrow molecular weight distributions (MWDs ≤ ~1.2) in quantitative yield. The Mn's of the product polymers increased in direct proportion to monomer conversion and continued to increase linearly after sequential addition of a fresh monomer feed to the almost completely polymerized reaction mixture, whereas the MWDs of the polymers remained narrow. These results indicated the formation of living polymer from vinyl ether 2 . The difference of living nature between monomers 1 and 2 was attributable to the difference of the electron‐withdrawing power of the carbamate substituents, namely, n‐butyl for 1 versus phenyl for 2 , of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2960–2972, 2004  相似文献   

12.
Three different, new germanium initiators were used for ring‐opening polymerization of L ‐lactide. Chlorobenzene and 120 °C was a usable polymerization system for solution polymerization, and the results from the polymerizations depended on the initiator structure and bulkiness around the insertion site. The average molecular weights as measured by size exclusion chromatography increased linearly with the monomer conversion, and the molecular weight dispersity was around 1.2 for initiators 1 and 2 , whereas it was around 1.4 for initiator 3 . The average molecular weight of poly(L ‐lactide) could be controlled with all three initiators by adding different ratios of monomer and initiator. The reaction rate for the solution polymerization was, however, overall extremely slow. With an initial monomer concentration of 1 M and a monomer‐to‐initiator ratio of 50, the conversion was 93% after 161 h for the fastest initiator. In bulk polymerization, 160 °C, the conversion was 90% after 10 h. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3074–3082, 2003  相似文献   

13.
Peroxidized polypropylene has been used as a heterofunctional initiator for a two-step emulsion polymerization of a vinyl monomer (M1) and vinyl chloride with the production of vinyl chloride block copolymers. Styrene, methyl-, and n-butyl methacrylate and methyl-, ethyl-, n-butyl-, and 2-ethyl-hexyl acrylate have been used as M1 and polymerized at 30–40°C. In the second step vinyl chloride was polymerized at 50°C. The range of chemical composition of the block copolymers depends on the rate of the first-step polymerization of M1 and the duration of the second step; e.g., with 2-ethyl-hexyl acrylate block copolymers could be obtained with a vinyl chloride content of 25–90%. The block copolymers have been submitted to precipitation fractionation and GPC analysis. Noteworthy is the absence of any significant amount of homopolymers, as well as poly(M1)n as PVC. The absence of homo-PVC was interpreted by an intra- and intermolecular tertiary hydrogen atom transfer from polypropylene residue to growing PVC sequences. The presence of saturated end groups on the PVC chains is responsible for the improved thermal stability of these block polymers, as well as their low rate of dehydrochlorination (180°C). Molecular aggregation in solution has been shown by molecular weight determination in benzene and tetrahydrofuran.  相似文献   

14.
Cationic polymerization of α‐methyl vinyl ethers was examined using an IBEA‐Et1.5AlCl1.5/SnCl4 initiating system in toluene in the presence of ethyl acetate at 0 ~ ?78 °C. 2‐Ethylhexyl 2‐propenyl ether (EHPE) had a higher reactivity, compared to corresponding vinyl ethers. But the resulting polymers had low molecular weights at 0 or ?50 °C. In contrast, the polymerization of EHPE at ?78 °C almost quantitatively proceeded, and the number‐average molecular weight (Mn) of the obtained polymers increased in direct proportion to the EHPE conversion with quite narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ≤ 1.05). In monomer‐addition experiments, the Mn of the polymers shifted higher with low polydispersity as the polymerization proceeded, indicative of living polymerization. In the polymerization of methyl 2‐propenyl ether (MPE), the living‐like propagation also occurred under the reaction conditions similar to those for EHPE, but the elimination of the pendant methoxy groups was observed. The introduction of a more stable terminal group, quenched with sodium diethyl malonate, suppressed this decomposition, and the living polymerization proceeded. The glass transition temperature of the obtained poly(MPE) was 34 °C, which is much higher than that of the corresponding poly(vinyl ether). This poly(MPE) had solubility characteristics that differed from those of poly(vinyl ethers). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2202–2211, 2008  相似文献   

15.
Hyperbranched polymethacrylates were prepared by means of oxyanionic vinyl polymerization of commercially available monomers, including hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methacrylate (PEG‐MA). Hyperbranched polymethacrylates with high molecular weight were obtained with the complex of potassium hydride and 18‐crown‐6 as the initiator. The effect of 18‐crown‐6 is very important, and only oligomer can be obtained in the polymerization without 18‐crown‐6. The molecular structure of the hyperbranched polymers was confirmed with 1H NMR and 13C NMR spectra. The ratio of initiator to monomer significantly affects the architecture of the resultant polymers. When the ratio of initiator to monomer equals 1 in the oxyanionic vinyl polymerization of HEMA, the degree of branching of the resulting polymer was calculated to be around 0.49. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3502–3509, 2005  相似文献   

16.
The controlled/living radical polymerization of 2‐(N‐carbazolyl)ethyl methacrylate (CzEMA) and 4‐(5‐(4‐tert‐butylphenyl‐1,3,4‐oxadiazol‐2‐yl)phenyl) methacrylate (t‐Bu‐OxaMA) via reversible addition‐fragmentation chain transfer polymerization has been studied. Functional polymers with hole‐ or electron‐transfer ability were synthesized with cumyl dithiobenzoate as a chain transfer agent (CTA) and AIBN as an initiator in a benzene solution. Good control of the polymerization was confirmed by the linear increase in the molecular weight (MW) with the conversion. The dependence of MW and polydispersity index (PDI) of the resulting polymers on the molar ratio of monomer to CTA, monomer concentration, and molar ratio of CTA to initiator has also been investigated. The MW and PDI of the resulting polymers were well controlled as being revealed by GPC measurements. The resulting polymers were further characterized by NMR, UV‐vis spectroscopy, and cyclic voltammetry. The polymers functionalized with carbazole group or 1,3,4‐oxadiazole group exhibited good thermal stability, with an onset decomposition temperature of about 305 and 323 °C, respectively, as determined by thermogravimetric analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 242–252, 2007  相似文献   

17.
贾志峰  陈皞  颜德岳 《化学学报》2005,63(20):1861-1865
由甲基丙烯酸羟丙酯通过自缩合乙烯基氧阴离子聚合(self-condensing vinyl oxyanionic polymerization)制备了端羟基的超支化聚甲基丙烯酸酯. 以氢化钾(KH)和冠醚的复合物为引发剂时, 可以得到高分子量的聚合物. 用1H NMR和13C NMR谱图证实了聚合物的超支化结构. 由于在聚合过程中存在质子转移反应, 引发剂与单体的摩尔比会影响所得聚合物的结构. 超支化聚合物的玻璃化转变温度在58.1~81.4 ℃之间, 且随着引发剂与单体的比例的减小而降低. 当引发剂与单体等摩尔比时, 所得聚合物的支化度为0.49.  相似文献   

18.
The effect of oxygen on the liquid-phase polymerization of vinyl chloride at 55°C in the presence of an added initiator, bis(4-tert-butylcyclohexyl) peroxydicarbonate (Perkadox 16), has been studied by the technique of tumbled dilatometry. With this method, at constant initiator concentration, the induction period showed a half-order dependence on the initial oxygen concentration. At a constant initial oxygen concentration, the induction period varied inversely as the square root of the initiator concentration. Under the experimental conditions empolyed, the polyperoxy radicals with chloroalkyl (~CH2?HCl) endgroups were not wholly scavenged by molecular oxygen but could undergo various decomposition reactions. The degree of conversion of the initial oxygen to peroxidic compounds did not exceed 30% by weight and was dependent on the shape of the reaction vessel empolyed. The existence of other oxidation products has been demonstrated. At 55°C, the average velocity constant for decomposition of the peroxide products from vinyl chloride, measured in dichloromethane solution, was found to be 8 × 10?5 sec?1. A kinetic scheme involving a predominant cross-termination reaction is proposed to explain the experimental results.  相似文献   

19.
Radical polymerization of 2-, 3-, and 4-chlorostyrenes (ClSts) was investigated with benzoyl peroxide (BPO) as an initiator, in the presence of 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO). The polymerization was performed in bulk for 3.5 h at 95°C and then continued for a defined time at 125°C to give the corresponding poly(ClSt)s with narrow polydispersity in high yield. It was found that the polymerization proceeded in accordance with a living mechanism in all cases, because the molecular weight of the resulting polymers was proportional to the conversion, and inversely proportional to the initial concentration of MTEMPO. Furthermore, the polymers obtained from 2- and 3-ClSts quantitatively act as initiators for the polymerization in the living radical manner, of styrene to give the corresponding block copolymers, except for poly(4-ClSt). The thermal stability of the living poly(ClSt)s was found to decrease in the order of 2- > 3- > 4-ClSt on the basis of the results of their postpolymerizations. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2371–2378, 1997  相似文献   

20.
p-Isopropenylphenyl glycidyl ether (IPGE), a monomer of dual cationic functionality (isopropenyl and epoxy), was polymerized by a variety of initiators, and optimum conditions were established for its selective vinyl cationic polymerization. The hydrogen iodide/iodine (HI/I2) initiating system or iodine polymerized selectively the isopropenyl group in CH2Cl2 at a low temperature (?78°C), to produce soluble poly(IPGE) with epoxy pendants. Under these conditions, the number-average molecular weight of the polymers was inversely proportional to the initial initiator concentration, indicating the formation of long-lived propagating species. Soluble poly(IPGE) was also obtained at ?15 and ?40°C by HI/I2 or iodine. However, at these higher temperatures, transfer and/or termination reactions took place to give olefin-terminated polymers, in which some of the pendant epoxy groups were consumed. BF3OEt2 (a metal halide) and CF3SO3H (a strong protonic acid) polymerized both epoxy and isopropenyl groups of IPGE and yielded crosslinked insoluble polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号