首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The water-soluble, non-mu-oxo dimer-forming porphyrin, [5,10,15,20-tetrakis-4'-t-butylphenyl-2',6'-bis-(N-methylene-(4'-t-butylpyridinium))porphyrinato]iron(III) octabromide, (P(8+))Fe(III), with eight positively charged substituents in the ortho positions of the phenyl rings, was characterized by UV-vis and 1H NMR spectroscopy and 17O NMR water-exchange studies in aqueous solution. Spectrophotometric titrations of (P(8+))Fe(III) indicated a pKa1 value of 5.0 for coordinated water in (P(8+))Fe(III)(H2O)2. The monohydroxo-ligated (P(8+))Fe(III)(OH)(H2O) formed at 5 < pH < 12 has a weakly bound water molecule that undergoes an exchange reaction, k(ex) = 2.4 x 10(6) s(-1), significantly faster than water exchange on (P(8+))Fe(III)(H2O)2, viz. k(ex) = 5.5 x 10(4) s(-1) at 25 degrees C. The porphyrin complex reacts with nitric oxide to yield the nitrosyl adduct, (P(8+))Fe(II)(NO+)(L) (L = H2O or OH-). The diaqua-ligated (P(8+))Fe(III)(H2O)2 binds and releases NO according to a dissociatively activated mechanism, analogous to that reported earlier for other (P)Fe(III)(H2O)2 complexes. Coordination of NO to (P(8+))Fe(III)(OH)(H2O) at high pH follows an associative mode, as evidenced by negative deltaS(double dagger)(on) and deltaV(double dagger)(on) values measured for this reaction. The observed ca. 10-fold decrease in the NO binding rate on going from six-coordinate (P(8+))Fe(III)(H2O)2 (k(on) = 15.1 x 10(3) M(-1) s(-1)) to (P(8+))Fe(III)(OH)(H2O) (k(on) = 1.56 x 10(3) M(-1) s(-1) at 25 degrees C) is ascribed to the different nature of the rate-limiting step for NO binding at low and high pH, respectively. The results are compared with data reported for other water-soluble iron(III) porphyrins with positively and negatively charged meso substituents. Influence of the porphyrin periphery on the dynamics of reversible NO binding to these (P)Fe(III) complexes as a function of pH is discussed on the basis of available experimental data.  相似文献   

2.
The polyanionic water-soluble and non-mu-oxo-dimer-forming iron porphyrin iron(III) 5(4),10(4),15(4),20(4)-tetra-tert-butyl-5(2),5(6),15(2),15(6)-tetrakis[2,2-bis(carboxylato)ethyl]-5,10,15,20-tetraphenylporphyrin, (P(8-))Fe(III) (1), was synthesized as an octasodium salt by applying well-established porphyrin and organic chemistry procedures to bromomethylated precursor porphyrins and characterized by standard techniques such as UV-vis and (1)H NMR spectroscopy. A single pK(a1) value of 9.26 was determined for the deprotonation of coordinated water in (P(8-))Fe(III)(H(2)O)(2) (1-H(2)()O) present in aqueous solution at pH <9. The porphyrin complex reversibly binds NO in aqueous solution to give the mononitrosyl adduct, (P(8-))Fe(II)(NO(+))(L), where L = H(2)O or OH(-). The kinetics of the binding and release of NO was studied as a function of pH, temperature, and pressure by stopped-flow and laser flash photolysis techniques. The diaqua-ligated form of the porphyrin complex binds and releases NO according to a dissociative interchange mechanism based on the positive values of the activation parameters DeltaS() and DeltaV() for the "on" and "off" reactions. The rate constant k(on) = 6.2 x 10(4) M(-1) s(-1) (24 degrees C), determined for NO binding to the monohydroxo-ligated (P(8-))Fe(III)(OH) (1-OH) present in solution at pH >9, is markedly lower than the corresponding value measured for 1-H(2)O at lower pH (k(on) = 8.2 x 10(5) M(-1) s(-1), 24 degrees C, pH 7). The observed decrease in the reactivity is contradictory to that expected for the diaqua- and monohydroxo-ligated forms of the iron(III) complex and is accounted for in terms of a mechanistic changeover observed for 1-H(2)O and 1-OH in their reactions with NO. The mechanistic interpretation offered is further substantiated by the results of water-exchange studies performed on the polyanionic porphyrin complex as a function of pH, temperature, and pressure.  相似文献   

3.
The interaction of tetrahydrofuran (THF) with thin films of the nitrato complexes Fe(III)(Por)(eta(2)-O(2)NO) [Por = meso-tetraphenylporphyrinato (TPP) and meso-tetratolylporphyrinato (TTP) dianion] at low temperature leads to the formation of the six-coordinate nitrato complex Fe(Por)(THF)(NO(3)), which was characterized by IR and UV-visible spectroscopies. Formation of the THF adduct was accompanied by nitrate linkage isomerization from bidentate to monodentate coordination. The iron(III) center remains in a high spin state in contrast with the previously observed low-spin nitratonitrosyl complex Fe(TPP)(NO)(eta(10-ONO(2)). Upon warming, THF dissociates to restore the initial five-coordinate bidentate nitrato complex.  相似文献   

4.
To investigate issues concerning the coordination of the nitrosyl ligand in naturally occurring hemes, we report the spectroscopy and X-ray structure of five-coordinate [Fe(Deut)(NO)]. Bonding parameters are comparable with those observed for previously characterized synthetic porphyrin complexes of this type. The asymmetric pattern of the peripheral substitution of the porphyrin core allows us to examine aspects associated with ligand binding and orientation previously unobserved in the symmetrical synthetic porphyrins. The nitrosyl is found to be oriented in the direction of the less basic pyrrole rings. This observed orientation of the NO is considered in reference to those orientations reported in a series of related protein structures. Off-axis tilting, a property associated with ordered (nitrosyl)iron(II) porphyrinates, is also investigated.  相似文献   

5.
The polyanionic, water-soluble, and non-micro-oxo dimer-forming iron porphyrin (hexadecasodium iron 54,104,154,204-tetra-t-butyl-52,56,102,106,152,156,202,206-octakis[2,2-bis(carboxylato)ethyl]-5,10,15,20-tetraphenylporphyrin), (P16-)FeIII, with 16 negatively charged meso substituents on the porphyrin was synthesized and fully characterized by UV-vis and 1H NMR spectroscopy. A single pKa1 value of 9.90 +/- 0.01 was determined for the deprotonation of coordinated water in the six-coordinate (P16-)FeIII(H2O)2 and as attributed to the formation of the five-coordinate monohydroxo-ligated form, (P16-)FeIII(OH). The porphyrin complex reversibly binds NO in aqueous solution to yield the nitric oxide adduct, (P16-)FeII(NO+)(L), where L = H2O or OH-. The kinetics for the reversible binding of NO were studied as a function of pH, temperature, and pressure using the stopped-flow technique. The data for the binding of NO to the diaqua complex are consistent with the operation of a dissociative mechanism on the basis of the significantly positive values of DeltaS and DeltaV, whereas the monohydroxo complex favors an associatively activated mechanism as determined from the corresponding negative activation parameters. The rate constant, kon = 3.1 x 104 M-1 s-1 at 25 degrees C, determined for the NO binding to (P16-)FeIII(OH) at higher pH, is significantly lower than the corresponding value measured for (P16-)FeIII(H2O)2 at lower pH, namely, kon = 11.3 x 105 M-1 s-1 at 25 degrees C. This decrease in the reactivity is analogous to that reported for other diaqua- and monohydroxo-ligated ferric porphyrin complexes, and is accounted for in terms of a mechanistic changeover observed for (P16-)FeIII(H2O)2 and (P16-)FeIII(OH). The formed nitrosyl complex, (P16-)FeII(NO+)(H2O), undergoes subsequent reductive nitrosylation to produce (P16-)FeII(NO), which is catalyzed by nitrite produced during the reaction. Concentration-, pH-, temperature-, and pressure-dependent kinetic data are reported for this reaction. Data for the reversible binding of NO and the subsequent reductive nitrosylation reaction are discussed in reference to that available for other iron(III) porphyrins in terms of the influence of the porphyrin periphery.  相似文献   

6.
The reaction of the water-soluble Fe(III)(TMPS) porphyrin with CN(-) in basic solution leads to the stepwise formation of Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2). The kinetics of the reaction of CN(-) with Fe(III)(TMPS)(CN)(H(2)O) was studied as a function of temperature and pressure. The positive value of the activation volume for the formation of Fe(III)(TMPS)(CN)(2) is consistent with the operation of a dissociatively activated mechanism and confirms the six-coordinate nature of the monocyano complex. A good agreement between the rate constants at pH 8 and 9 for the formation of the dicyano complex implies the presence of water in the axial position trans to coordinated cyanide in the monocyano complex and eliminates the existence of Fe(III)(TMPS)(CN)(OH) under the selected reaction conditions. Both Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2) bind nitric oxide (NO) to form the same nitrosyl complex, namely, Fe(II)(TMPS)(CN)(NO(+)). Kinetic studies indicate that nitrosylation of Fe(III)(TMPS)(CN)(2) follows a limiting dissociative mechanism that is supported by the independence of the observed rate constant on [NO] at an appropriately high excess of NO, and the positive values of both the activation parameters ΔS(?) and ΔV(?) found for the reaction under such conditions. The relatively small first-order rate constant for NO binding, namely, (1.54 ± 0.01) × 10(-2) s(-1), correlates with the rate constant for CN(-) release from the Fe(III)(TMPS)(CN)(2) complex, namely, (1.3 ± 0.2) × 10(-2) s(-1) at 20 °C, and supports the proposed nitrosylation mechanism.  相似文献   

7.
The reactions of a water-soluble iron(III)-porphyrin, [meso-tetrakis(sulfonatomesityl)porphyrinato]iron(III), [Fe(III)(tmps)] (1), with m-chloroperoxybenzoic acid (mCPBA), iodosylbenzene (PhIO), and H(2)O(2) at different pH values in aqueous methanol solutions at -35 degrees C have been studied by using stopped-flow UV/Vis spectroscopy. The nature of the porphyrin product resulting from the reactions with all three oxidants changed from the oxo-iron(IV)-porphyrin pi-cation radical [Fe(IV)(tmps(*+))(O)] (1(++)) at pH<5.5 to the oxo-iron(IV)-porphyrin [Fe(IV)(tmps)(O)] (1(+)) at pH>7.5, whereas a mixture of both species was formed in the intermediate pH range of 5.5-7.5. The observed reactivity pattern correlates with the E degrees' versus pH profile reported for 1, which reflects pH-dependent changes in the relative positions of E degrees'(Fe(IV)/Fe(III) ) and E degrees'(P(*+)/P) for metal- and porphyrin-centered oxidation, respectively. On this basis, the pH-dependent redox equilibria involving 1(++) and 1(+) are suggested to determine the nature of the final products that result from the oxidation of 1 at a given pH. The conclusions reached are extended to water-insoluble iron(III)-porphyrins on the basis of literature data concerning the electrochemical and catalytic properties of [Fe(III)(P)(X)] species in nonaqueous solvents. Implications for mechanistic studies on [Fe(P)]-catalyzed oxidation reactions are briefly addressed.  相似文献   

8.
5,10,15,20-Tetrakis(4-sulfonatophenyl)porphinato iron(III) (Fe(III)TPPS) forms a very stable 1:2 complex with heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMe-beta-CD), whose iron(III) center is located at a hydrophobic cleft formed by two face-to-face TMe-beta-CD molecules. Various inorganic anions (X(-)) such as F(-), Cl(-), Br(-), I(-), N(3)(-), and SCN(-) coordinate to Fe(III)TPPS(TMe-beta-CD)(2) to form five-coordinate high-spin Fe(III)TPPS(X)(TMe-beta-CD)(2), while no coordination occurs with ClO(4)(-), H(2)PO(4)(-), NO(3)(-), and HSO(4)(-). Except for F(-), none of the anions investigated coordinate to Fe(III)TPPS in the absence of TMe-beta-CD due to extensive hydration to the anions as well as to Fe(III)TPPS. The present system shows a high selectivity toward the N(3)(-) anion. The thermodynamics suggests that Lewis basicity, hydrophilicity, and shape of an X(-) anion are the main factors to determine the stability of the Fe(III)TPPS(X)(TMe-beta-CD)(2) complex.  相似文献   

9.
The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe (III)(Ent)] (3-). This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an antibacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidic endosomes and [Fe (III)(Ent)] (3-) is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe (III)(Ent)] (3-) and Scn-Y106F:[Fe (III)(Ent)] (3-) complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe (III)(Ent)] (3-). Fluorescence, UV-vis, and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogues of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.  相似文献   

10.
The iron(III) complexes [Fe(2)(HPTB)(mu-OH)(NO(3))(2)](NO(3))(2).CH(3)OH.2H(2)O (1), [Fe(2)(HPTB)(mu-OCH(3))(NO(3))(2)](NO(3))(2).4.5CH(3)OH (2), [Fe(2)(HPTB)(mu-OH)(OBz)(2)](ClO(4))(2).4.5H(2)O (3), [Fe(2)(N-EtOH-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3CH(3)OH.1.5H(2)O (4), [Fe(2)(5,6-Me(2)-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3.5CH(3)OH.C(2)H(5)OC(2)H(5).0.5H(2)O (5), and [Fe(4)(HPTB)(2)(mu-F)(2)(OH)(4)](ClO(4))(4).CH(3)CN.C(2)H(5)OC(2)H(5).H(2)O (6) were synthesized (HPTB = N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, N-EtOH-HPTB = N,N,N',N'-tetrakis(N' '-(2-hydroxoethyl)-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, 5,6-Me(2)-HPTB = N,N,N',N'-tetrakis(5,6-dimethyl-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane). The molecular structures of 2-6 were established by single-crystal X-ray crystallography. Iron(II) complexes with ligands similar to the dinucleating ligands described herein have been used previously as model compounds for the dioxygen uptake at the active sites of non-heme iron enzymes. The same metastable (mu-peroxo)diiron(III) adducts were observed during these studies. They can be prepared by adding hydrogen peroxide to the iron(III) compounds 1-6. Using stopped-flow techniques these reactions were kinetically investigated in different solvents and a mechanism was postulated.  相似文献   

11.
Using magnetic circular dichroism (MCD) spectroscopy together with DFT calculations, the spin density distributions in five-coordinate [Fe(TPP)(NO)] (I) and six-coordinate [Fe(TPP)(MI)(NO)] (II, MI = 1-methylimidazole) are defined. In the five-coordinate complex, a strong Fe-NO sigma bond between pi(*)(h) and d(z)(2) is present that leads to a large transfer of spin density from the NO ligand to Fe(II) corresponding to an electronic structure with noticeable Fe(I)-NO(+) character. Consequently, the MCD spectrum is dominated by paramagnetic C-term contributions. On coordination of the sixth ligand, the spin density is pushed back from the iron toward the NO ligand, resulting in an Fe(II)-NO(radical) type of electronic structure. This is reflected by the fact that the MCD spectrum is dominated by diamagnetic contributions.  相似文献   

12.
Jee JE  van Eldik R 《Inorganic chemistry》2006,45(16):6523-6534
The nitrosyl complexes formed during the binding of NO to the (Pn)FeIII(H2O)2 (n = 8+ and 8-) complexes, viz., (P8-)FeII(H2O)(NO+) and (P8+)FeII(H2O)(NO+), undergo subsequent reductive nitrosylation reactions that were found to be catalyzed by nitrite, which was also produced during the reaction. The effect of the nitrite concentration, pH, temperature, and pressure on the nitrite-catalyzed reductive nitrosylation process was studied in detail for (P8-)FeIII(H2O)2, (P8+)FeIII(H2O)2, and (P8+)FeIII(OH)(H2O), from which rate and activation parameters were obtained. On the basis of these data, we propose mechanistic pathways for the studied reactions. The available results favor the operation of an innersphere electron-transfer process between nitrite and coordinated NO(+). By way of comparison, the cationic porphyrin complex (P8+)FeIII(L)2 (L = H2O or OH-) was found to react with NO2(-) to yield the nitrite adduct (P8+)FeIII(L)(NO2)(-)). A detailed kinetic studied revealed that nitrite binds to (P8+)FeIII(H2O)2 according to a dissociative mechanism, whereas nitrite binding to (P8+)FeIII(OH)(H2O) at higher pH follows an associative mechanism, similar to that reported for the binding of NO to these complexes.  相似文献   

13.
The demetalation process of 10 multi-iron Wells-Dawson polyoxometalates is studied by cyclic voltammetry and controlled potential coulometry. Eight sandwich-type complexes (alphaalphaalphaalpha-Na(16)[(NaOH(2))(2)(Fe(III))(2)(X(2)W(15)O(56))(2)], alphaalphabetaalpha-Na(14)[(NaOH(2))(Fe(III)OH(2))(Fe(III))(2)(X(2)W(15)O(56))(2)], alphabetabetaalpha-Na(12)[(Fe(III)OH(2))(2)(Fe(III))(2)(X(2)W(15)O(56))(2)], and alphabetabetaalpha-Na(14)[(Mn(II)OH(2))(2)(Fe(III))(2)(X(2)W(15)O(56))(2)] (where X = P(V) or As(V))) and two monomeric complexes (alpha-Na(11)[(P(2)(Fe(III)Cl)(2)(Fe(III)OH(2))W(15)O(59))] and alpha-Na(11)[(As(2)(Fe(III)Cl)(2)Fe(III)OH(2))W(15)O(59))]) were selected for this study. All 10 complexes show Fe(III) waves which are well-separated from the redox activity of the W(VI) centers. At room temperature and under mild conditions, iron release from the complexes is observed upon reduction of the Fe(III) centers. This release is controlled by the ionic strength of the medium, the nature and concentration of the anions present in the supporting electrolyte, and by the pH of the solution. This behavior parallels those described for most siderophores which depend on the same parameters.  相似文献   

14.
New mu-oxo-diferric complexes have been designed for hydrolysis of phosphodiesters. To mimic the diiron active site of purple acid phosphatase, a combinatorial method has been used to select complexes containing two distinct iron coordination spheres. The introduction of a bidentate ligand, a substituted phenanthroline (L) into complex 1, [Fe2O(bipy)4(OH2)2](NO3)4, generates in solution the complex [Fe2O(bipy)3(L)(OH2)2](NO3)4 as shown by ESI/MS and 1H NMR studies. The latter complex was found to be 20-fold more active than complex 1. On the basis of kinetic studies, we demonstrated that the complex [Fe2O(bipy)3(L)(OH)(OH2)](NO3)3 was the active species and the reaction proceeded through the formation of a ternary complex in which one iron binds a hydroxide and the second, the substrate. At nonsaturating concentrations of the substrate, the increased activity with increased methyl substituents in L was due to an increased affinity of the complex for the substrate. The activity of [Fe2O(bipy)3(33'44'Me2-Phen)(OH2)2](NO3)4 [33'44'Me2Phen = 3,3',4,4'-dimethyl-1,10-phenanthroline] was found to be comparable to that reported for Co(III) or Ce(IV) complexes.  相似文献   

15.
Mechanistic insight on the reversible binding of NO to Fe(II) chelate complexes as potential catalysts for the removal of NO from effluent gas streams has been obtained from the temperature and pressure parameters for the "on" and "off" reactions determined using a combination of flash photolysis and stopped-flow techniques. These parameters are correlated with those for water exchange reactions on the corresponding Fe(II) and Fe(III) chelate complexes, from which mechanistic conclusions are drawn. Small and positive Delta V(++) values are found for NO binding to and release from all the selected complexes, consistent with a dissociative interchange (I(d)) mechanism. The only exception in the series of studied complexes is the binding of NO to [Fe(II)(nta)(H(2)O)(2)](-). The negative volume of activation observed for this reaction supports the operation of an I(a) ligand substitution mechanism. The apparent mechanistic differences can be accounted for in terms of the electronic and structural features of the studied complexes. The results indicate that the aminocarboxylate chelates affect the rate and overall equilibrium constants, as well as the nature of the substitution mechanism by which NO coordinates to the selected complexes. There is, however, no simple correlation between the rate and activation parameters and the selected donor groups or overall charge on the iron(II) complexes.  相似文献   

16.
The present study focuses on the formation and reactivity of hydroperoxo-iron(III) porphyrin complexes formed in the [Fe(III)(tpfpp)X]/H(2)O(2)/HOO(-) system (TPFPP=5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin; X=Cl(-) or CF(3) SO(3)(-)) in acetonitrile under basic conditions at -15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high-spin [Fe(III)(tpfpp)(OOH)] and low-spin [Fe(III)(tpfpp)(OH)(OOH)] could be observed with the application of a low-temperature rapid-scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O-O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo- to heterolytic O-O bond cleavage is observed for high- [Fe(III)(tpfpp)(OOH)] and low-spin [Fe(III)(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron-rich porphyrin ligands, electron-deficient [Fe(III)(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [Fe(III)(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)-oxo porphyrin π-cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

17.
The reductive nitrosylation (Fe(III)(P) + 2NO + H(2)O = Fe(II)(P)(NO) + NO(2)(-) + 2H(+)) of the ferriheme model Fe(III)(TPPS) (TPPS = tetra(4-sulfonatophenyl)porphyrinato) has been investigated in moderately acidic solution. In the absence of added or adventitious nitrite, this reaction displays general base catalysis with several buffers in aqueous solutions. It was also found that the nitrite ion, NO(2)(-), is a catalyst for this reaction. Similar nitrite catalysis was demonstrated for another ferriheme model system Fe(III)(TMPy) (TMPy = meso-tetrakis(N-methyl-4-pyridyl)porphyrinato), and for ferriheme proteins met-hemoglobin (metHb) and met-myoglobin (metMb) in aqueous buffer solutions. Thus, it appears that such catalysis is a general mechanistic route to the reductive nitrosylation products. Two nitrite catalysis mechanisms are proposed. In the first, NO(2)(-) is visualized as operating via nucleophilic addition to the Fe(III)-coordinated NO in a manner similar to the reactions proposed for Fe(III) reduction promoted by other nucleophiles. This would give a labile N(2)O(3) ligand that hydrolyzes to nitrous acid, regenerating the original nitrite. The other proposal is that Fe(III) reduction is effected by direct outer-sphere electron transfer from NO(2)(-) to Fe(III)(P)(NO) to give nitrogen dioxide plus the ferrous nitrosyl complex Fe(II)(P)(NO). The NO(2) thus generated would be trapped by excess NO to give N(2)O(3) and, subsequently, nitrite. It is found that the nitrite catalysis rates are markedly sensitive to the respective Fe(III)(P)(NO) reduction potentials, which is consistent with the behavior expected for an outer-sphere electron-transfer mechanism. Nitrite is the product of NO autoxidation in aqueous solution and is a ubiquitous impurity in experiments where aqueous NO is added to an aerobic system to study biological effects. The present results demonstrate that such an impurity should not be assumed to be innocuous, especially in the context of recent reports that endogenous nitrite may play physiological roles relevant to the interactions of NO and ferriheme proteins.  相似文献   

18.
The synthesis and crystallographic characterization of the five-coordinate iron(III) porphyrinate complex [Fe(OEP)(NO)]ClO4 are reported. This [FeNO]6 complex has a nearly linear Fe-N-O group (angle = 173.19(13) degrees) with a small off-axis tilt of the Fe-N(NO) vector from the heme normal (angle = 4.6 degrees); the Fe-N(NO) distance is 1.6528(13) A and the iron is displaced 0.32 A out-of-plane. The complex forms a tight cofacial pi-pi dimer in the solid state. M?ssbauer spectra for this derivative as well as for a related crystalline form are measured both in zero applied magnetic field and in a 7 T applied field. Fits to the measurements made in applied magnetic field demonstrate that both crystalline forms of [Fe(OEP)(NO)]ClO4 have a diamagnetic ground state at 4.2 K. The observed isomer shifts (delta = 0.22-0.24 mm/s) are smaller than those typically observed for low-spin iron(III) porphyrinates. Analogous M?ssbauer measurements are also obtained for a six-coordinate derivative, [Fe(OEP)(Iz)(NO)]ClO4 (Iz = indazole). The observed isomer shift for this species is smaller still (delta = 0.02 mm/s). All derivatives show a strong temperature dependence of the isomer shift. The data emphasize the strongly covalent nature of the FeNO group. The M?ssbauer isomer shifts suggest formal oxidation states greater than +3 for iron, but the NO stretching frequencies are not consistent with such a large charge transfer to NO. Differences in the observed nitrosyl stretching frequencies of the two crystalline forms of [Fe(OEP)(NO)]ClO4 are discussed.  相似文献   

19.
The reaction of iron(III) (meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (Fe(III)TMPyP) with nitric oxide (NO) was studied by electronic absorption spectroscopy, ESR, and electrochemical and spectroelectrochemical techniques in aqueous solutions with pH from 2.2 to 12.0. Fe(III)TMPyP has been found to undergo a reductive nitrosylation in all pHs, and the product of nitric oxide binding to the porphyrin has been determined as iron(II) porphyrin nitrosyl complex ([Fe(II)(NO)TMPyP]). The rate of the reductive nitrosylation exhibits a tendency to get faster with increase in pH. An intermediate species was observed around neutral pH by spectroelectrochemical technique and was proposed to be the iron(II) nitrosyl complex of the mu-oxo dimeric form of FeTMPyP, which is known to be a predominant in neutral solutions.  相似文献   

20.
Model ferric heme nitrosyl complexes, [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+), where TPP is the dianion of 5,10,15,20-tetrakis-phenyl-porphyrin and TPFPP is the dianion of 5,10,15,20-tetrakis-pentafluorophenyl-porphyrin, have been obtained as isolated species by the gas phase reaction of NO with [Fe(III)(TPP)](+) and [Fe(III) (TPFPP)](+) ions delivered in the gas phase by electrospray ionization, respectively. The so-formed nitrosyl complexes have been characterized by vibrational spectroscopy also exploiting (15)N-isotope substitution in the NO ligand. The characteristic NO stretching frequency is observed at 1825 and 1859 cm(-1) for [Fe(III)(TPP)(NO)](+) and [Fe(III)(TPFPP)(NO)](+) ions, respectively, providing reference values for genuine five-coordinate Fe(III)(NO) porphyrin complexes differing only for the presence of either phenyl or pentafluorophenyl substituents on the meso positions of the porphyrin ligand. The vibrational assignment is aided by hybrid density functional theory (DFT) calculations of geometry and electronic structure and frequency analysis which clearly support a singlet spin electronic state for both [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+) complexes. Both TD-DFT and CASSCF calculations suggest that the singlet ground state is best described as Fe(II)(NO(+)) and that the open-shell AFC bonding scheme contribute for a high-energy excited state. The kinetics of the NO addition reaction in the gas phase are faster for [Fe(III)(TPFPP)](+) ions by a relatively small factor, though highly reliable because of a direct comparative evaluation. The study was aimed at gaining vibrational and reactivity data on five-coordinate Fe(III)(NO) porphyrin complexes, typically transient species in solution, ultimately to provide insights into the nature of the Fe(NO) interaction in heme proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号