首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We construct an atomistic silica pore model mimicking templated mesoporous silica MCM-41, which has molecular-level surface roughness, with the aid of the electron density profile (EDP) of MCM-41 obtained from X-ray diffraction data. Then, we present the GCMC simulations of argon adsorption on our atomistic silica pore models for two different MCM-41 samples at 75, 80, and 87 K, and the results are compared with the experimental adsorption data. We demonstrate that accurate molecular modeling of the pore structure of MCM-41 by using the experimental EDP allows the prediction of experimental capillary evaporation pressures at all investigated temperatures. The experimental desorption branches of the two MCM-41 samples are in good agreement with equilibrium vapor–liquid transition pressures from the simulations, which suggests that the experimental desorption branch for the open-ended cylindrical pores is in thermodynamic equilibrium.  相似文献   

2.
We present an accurate comparative analysis of N 2 adsorption at 77 K on nonporous silica and the pore wall surface of MCM-41 materials. The analysis shows that in the low-pressure region of N 2 adsorption obeys a peculiar mechanism governed by short-ranged forces, which makes the surface curvature effect on the N 2 adsorption in mesopores nearly negligible. We used this observation to define more exactly compared to the BET technique the specific surface area of the reference adsorption isotherm on nonporous silica basing on XRD data and linear sections of t-plots. Calculation of the capillary evaporation and condensation pressures seems to confirm our previous finding that the capillary condensation pressure corresponds to the equilibrium transition rather than spinodal condensation at least for pore sizes less than 7 nm. It allowed us to provide more reliable pore size distribution (PSD) analysis of mesoporous silica materials. For example, the PSDs of MCM-41 samples do not show artificial peaks in the micropore range that we obtained in our earlier publications.  相似文献   

3.
甲烷在中孔分子筛MCM-41中吸附的计算机模拟   总被引:4,自引:0,他引:4  
采用巨正则系综Monte Carlo方法研究了甲烷在两个不同孔径的MCM-41中不同温度下的吸附等温线和其在孔中的相行为和排列方式.模拟结果显示,在较小孔径的MCM-41中,流体分子达到毛细凝聚所需的化学位较小,并且观察到两个孔径下计算机模拟得到的亚稳态区域都非常宽,使得层状转变(如果有的话)被包含在这个区域.通过比较两种孔径下达到毛细凝聚后的构型,可以看出,在3.5 nm的孔中流体的分子结构出现非常有序的排列,而在5.0 nm的孔中则没有.在常温300 K时甲烷的吸附的计算机模拟表明,孔壁对流体分子的作用仅仅影响较靠近壁面附近的流体分子的排列,而对孔中间的分子几乎没有影响.  相似文献   

4.
This paper reports a molecular simulation and experimental study on the adsorption and condensation of simple fluids in mesoporous micelle-templated silicas MCM-41, MCM-48, and SBA-15. MCM-41 is described as a regular cylindrical silica nanopore, while SBA-15 is assumed to be made up of cylindrical nanopores that are connected through lateral channels. The 3D-connected topology of MCM-48 is described using a gyroid periodic minimal surface. Argon adsorption at 77 K is calculated for the three materials using Grand Canonical Monte Carlo simulations. Qualitative comparison with experiments for nitrogen adsorption in mesoporous micelle-templated silicas is made. The adsorption isotherm for SBA-15 resembles that for MCM-41. In particular, capillary condensation and evaporation are not affected by the presence of the connecting lateral channels. In contrast, the argon adsorption isotherm for MCM-48 departs from that for MCM-41 having the same pore size. While condensation in MCM-41 is a one-step process, filling of MCM-48 involves two successive jumps in the adsorbed amounts which correspond to condensation in different domains of the porosity. The condensation pressure for MCM-48 is larger than that for MCM-41. We attribute this result to the morphology of the MCM-48 surface (made up of both concave and convex regions) that differs from that for MCM-41 (concave only). Our results suggest that the pore connectivity affects pore filling when the size of the connections is comparable to that of the nanopores.  相似文献   

5.
Adsorption-desorption isotherms of toluene, methylcyclohexane and neopentane were determined on a silica MCM-41 material of pore diameter ∼3.4 nm over the temperature range 258 K to 308 K (278 K for neopentane). The isosteric enthalpies of adsorption were determined from the isotherms at the various temperatures. It was found that the isotherms of toluene and methylcyclohexane have a similar variation with the temperature, exhibiting hysteresis at 268 K and at lower temperature, while the adsorption of neopentane is reversible at all temperatures. The three organic adsorptives interact differently with the silica surface and the isosteric enthalpies of adsorption indicated that methylcyclohexane has the weakest interaction and toluene the strongest. A slight increase in the adsorption enthalpy at the beginning of the capillary condensation step is observed with methylcyclohexane and neopentane but not with toluene.  相似文献   

6.
以CTMABr和CTMAOH为共模板剂合成MCM-41   总被引:5,自引:0,他引:5  
采用共模板剂水热合成了MCM-41.分别用X射线粉末衍射(XRD)、固体核磁共振(27AlMASNMR)和N2吸附等温线技术考察了用该方法和传统方法所制备的Si-MCM-41和Al-MCM-41样品的晶相结构、孔结构以及Al在分子筛中的化学环境.结果表明,用共模板剂方法合成的MCM-41样品,其纯度和孔径均一性显著提高,特别是当样品中Al含量较高时,仍可保证Al原子以四配位结合在MCM-41的硅骨架上.还就采用共模板剂的理论依据进行了讨论.  相似文献   

7.
To examine the nature of the adsorption and desorption branches in hysteretic adsorption isotherms of gases on mesoporous materials, we measured the temperature dependence of the adsorption and desorption isotherms of argon, oxygen, and carbon dioxide onto MCM-41 with a pore diameter of 4.4 nm. The results clearly show that in the open-ended cylindrical pores of MCM-41, capillary condensation rather than evaporation takes place near a thermodynamical equilibrium transition, as opposed to the general statement that capillary evaporation can occur via a meniscus formed at the pore mouth, and, thus, takes place at equilibrium.  相似文献   

8.
辅助有机胺对介孔分子筛MCM-41合成及其性质的影响   总被引:3,自引:5,他引:3  
采用阳离子表面活性剂十六烷基三甲基溴化铵为模板剂、硫酸铝为铝源、硅溶胶为硅源,分别使用中等链长的有机胺和正己烷作为辅助添加剂,用水热晶化法在碱性介质中合成了介孔分子筛MCM-41,通过XRD、N2吸附-脱附、SEM测试手段对得到的样品进行了对比表征分析。实验结果表明,除三乙胺外,向反应体系中加入适量的三正丙胺、三正丁基胺、三正辛胺和二异丁胺后,均能够使介孔 MCM-41的d100值和孔径增大,且具有较大的BET表面积(>1 000 m2/g)和孔容(>1 cm3/g);加入正己烷后,也可以使得MCM-41孔径变大,但是和加入有机胺相比较,合成的样品具有较小的BET表面积(887.3 m2/g)和孔容(0.81 cm3/g)。  相似文献   

9.
高骨架铝含量Al-MCM-41的合成   总被引:10,自引:1,他引:10  
制备了不同Al含量的Al-MCM-41试样,其中Si/Al比值最小为3,即最高含铝量x~A~l=0.303。X射线粉末衍射(XRD)分析表明样品具有MCM-41的特征结构,氮气吸附研究表明,样品呈现Ⅳ型吸附等温线,具有孔径分布均一的中孔结构。文中还利用^2^7AlMASNMR研究了试样中Al的化学环境,结果表明,即使在高铝含量的情况下,样品中的铝原子仍以四配位结合在MCM-41的硅骨架上,未能检测出骨架外六配位铝的存在。文中还就Al含量对孔结构的影响以及Al-MCM-41形成机理作了讨论。  相似文献   

10.
This paper reports the development and testing of atomistic models of silica MCM-41 pores. Model A is a regular cylindrical pore having a constant section. Model B has a surface disorder that reproduces the morphological features of a pore obtained from an on-lattice simulation that mimics the synthesis process of MCM-41 materials. Both models are generated using a similar procedure, which consists of carving the pore out of an atomistic silica block. The differences between the two models are analyzed in terms of small angle neutron scattering spectra as well as adsorption isotherms and isosteric heat curves for Ar at 87 K and Xe at 195 K. As expected for capillary condensation in regular nanopores, the Ar and Xe adsorption/desorption cycles for model A exhibit a large hysteresis loop having a symmetrical shape, i.e., with parallel adsorption and desorption branches. The features of the adsorption isotherms for model B strongly depart from those observed for model A. Both the Ar and Xe adsorption branches for model B correspond to a quasicontinuous pore filling that involves coexistence within the pore of liquid bridges and gas nanobubbles. As in the case of model A, the Ar adsorption isotherm for model B exhibits a significant hysteresis loop; however, the shape of the loop is asymmetrical with a desorption branch much steeper than the adsorption branch. In contrast, the adsorption/desorption cycle for Xe in model B is quasicontinuous and quasireversible. Comparison with adsorption and neutron scattering experiments suggests that model B is too rough at the molecular scale but reproduces reasonably the surface disorder of real MCM-41 at larger length scales. In contrast, model A is smooth at small length scales in agreement with experiments but seems to be too ordered at larger length scales.  相似文献   

11.
The isosteric enthalpy of adsorption for neopentane at relative pressures down to 3 × 10(-8) in MCM-41 was predicted for the temperature range from -15 to 0 °C. At such low pressures and temperatures, experimental measurements become problematic for this system. We used an atomistic model for MCM-41 obtained by means of a kinetic Monte Carlo method mimicking the synthesis of the material. The model was parametrized to represent experimental nitrogen adsorption isotherms at 77 K using grand canonical Monte Carlo simulations. The simulated isosteric enthalpy of adsorption shows very good agreement with available experimental data, demonstrating that GCMC simulations can predict heats of adsorption for conditions that are challenging for experimental measurements. Additional insights into the adsorption mechanisms, derived from energetic analysis at the molecular level, are also presented.  相似文献   

12.
The effect of hydrothermal treatment of the synthesis gel on the structure, hydrothermal and mechanical stabilities and acidity of MCM-41 and MCM-48 aluminosilicates synthesised at room temperature has been investigated by X-ray diffraction, nitrogen adsorption at 77 K and DRIFTS with pyridine as probe molecule. The influence of the Al content and pore size on the structure of the resulting treated Al-MCM-41 materials has also been studied. For all samples improvement of the structural ordering and increase of the pore size, was observed, with pore wall thickness remaining practically unchanged. For Al-MCM-48 an improvement of the pore size uniformity occurs during the treatment. Only a small loss of pore size uniformity occurred for Al-MCM-41 prepared with hexadecyltrimethylammonium bromide, but with samples prepared with tetra and octadecyltrimethylammonium bromide the treatment generated a bimodal pore size distribution. The pore volume increased (17%) in the case of Al-MCM-48 but decreased (5.5–14%) for Al-MCM-41, suggesting a decrease in surface roughness resulting from increase of the degree of condensation of the pore walls. Both treated and untreated samples presented relatively strong Brønsted sites and increase of the Lewis acidity was found to occur upon treatment. Treated samples were found to be more resistant to refluxing in boiling water and mechanical compaction, which was attributed to more polymerised pore walls, with Al-MCM-41 samples tested demonstrating higher stability than Al-MCM-48. However, the differences in stability of samples prepared with or without hydrothermal treatment were not significant. Both treated and untreated samples presented high hydrothermal stability. Although refluxing in boiling water lead to some loss of structural ordering, only a small decrease of pore volume (3–5.5% for Al-MCM-41 and 8-14% for Al-MCM-48) occurred, with practically no alterations in pore size and wall thickness. Ordered mesopore structure, with narrower pores and thicker walls, was still observed after compression at 590 MPa for most of the samples tested.  相似文献   

13.
混合超分子液晶模板法合成六方介孔相含钛氧化硅   总被引:7,自引:0,他引:7  
采用混合十六烷基三甲基溴化铵(CTAB)与不同碳链的脂肪胺(CnNH2n+3, n=8,10,12,14,16)作模板,在四甲基氢氧化胺为碱源的条件下,合成了具有六方介孔结构的含钛氧化硅Ti MCM 41分子筛材料. XRD和TEM测试表明所合成材料具有高度的长程有序结构,样品的N2吸附/脱附等温线表明,高度有序的Ti MCM 41材料展示了毛细凝聚的陡峭台阶和狭窄的介孔孔径分布.对反应物配比中Ti/Si比、脂肪胺碳链长度n对六方介孔相结构的影响进行了研究,实验发现当Ti/Si< 0.15和n< 16时,均可获得具有六方介孔结构的含钛氧化硅Ti MCM 41;而当Ti/Si≥0.15或n >16时,产物将分别发生从六方向无定形态或从六方向层状介孔相结构的转移,从混合表面活性剂的堆积参数对这种相转移现象进行了分析.  相似文献   

14.
高纯度中孔分子筛MCM-41的合成与表征   总被引:10,自引:0,他引:10  
用不同pH值的混合物制备了不同孔径的全硅MCM-41和不同金属离子取代的M-MCM-41(M=Al,Mn,Fe和V)分子筛.这些试样均呈现MCM-41的X射线粉末衍射特征峰和Ⅳ型氮气吸附等温线,但混有不同含量的无定形氧化硅.样品中MCM-41晶体的含量与溶胶的pH值和所用表面活性剂的碳链链长有关.骨架硅的金属离子取代降低了MCM-41的有序度,并且(100)面衍射峰强度从Al到V依次减弱.  相似文献   

15.
We have analyzed various phenomena that occur in nanopores, focusing on elucidating their key mechanisms, to advance the effective engineering use of nanoporous materials. As ideal experimental systems, molecular simulations can effectively provide information at the molecular level that leads to mechanistic insight. In this short review, several of our recent results are presented. The first topic is the critical point depression of Lennard-Jones fluid in silica slit pores due to finite size effects, studied by our original Monte Carlo (MC) technique. We demonstrate that the first layers of adsorbed molecules in contact with the pore walls act as a “fluid wall” and impose extra finite size effects on the fluid confined in the central portion of the pore. We next present a new kernel for pore size distribution (PSD) analysis, based entirely on molecular simulation, which consists of local isotherms for nitrogen adsorption in carbon slit pores at 77 K. The kernel is obtained by combining grand canonical Monte Carlo (GCMC) method and open pore cell MC method that was developed in the previous study. We show that overall trends of the PSDs of activated carbons calculated with our new kernel and with conventional kernel from non-local density functional theory are nearly the same; however, apparent difference can be seen between them. As the third topic, we apply a free energy analysis method with the aid of GCMC simulations to investigate the gating behavior observed in a porous coordination polymer, and propose a mechanism for the adsorption-induced structural transition based on both the theory of equilibrium and kinetics. Finally, we construct an atomistic silica pore model that mimics MCM-41, which has atomic-level surface roughness, and perform molecular simulations to understand the mechanism of capillary condensation with hysteresis. We calculate the work required for the gas–liquid transition from the simulation data, and show that the adsorption branch with hysteresis for MCM-41 arise from spontaneous capillary condensation from a metastable state.  相似文献   

16.
采用液相浸渍法研究了蔗糖在中孔MCM-48表面的自发单层分散. 用X射线衍射(XRD)相定量分析法, 测定了蔗糖在MCM-48上的最大分散容量, 并用差热分析、N2吸附技术对制备的样品进行表征. 结果表明, 在蔗糖与MCM-48的质量比小于1.1时, 蔗糖在MCM-48表面能自发分散成单层. 当蔗糖/MCM-48 质量比为0.8时, MCM-48的比表面积由初始的998 m2·g-1降至114 m2·g-1, 孔径由原来的2.7 nm降至2.0 nm, 孔容由0.76 cm3·g-1降至0.11 cm3·g-1. 当蔗糖与MCM-48的质量比超过1.1时, MCM-48的比表面积迅速减小至10 m2·g-1以下. 这是因为蔗糖分子大小和MCM-48孔径相差不大, 导致蔗糖在MCM-48表面分散时出现孔道堵塞.  相似文献   

17.
氮气在MCM-41分子筛中的吸附:实验和分子模拟   总被引:4,自引:0,他引:4  
用美国Micromeritics公司生产的ASAP2010物理吸附仪测定了低温(77 K) N_2在MCM-41分子筛中的吸附等温线,获得了表征MCM-41特征的BET比表面、BJH孔 容和平均孔径。同时用巨正则Monte Carlo(GCMC)模拟方法考究了N_2在MCM-41中 的吸附,得到了N_2在MCM-41中的模拟吸附等温线,分析了流体在MCM-41分子筛中 的微观结构。GCMC模拟中MCM-41介孔材料模型化为圆柱孔,N_2模型化为Lennard- Jones(LJ)球。N_2和MCM-41介孔墙壁间的相互作用采用Tjatjopoulos-Feke- Mann(TFM)势能模型进行表征。通过使模拟和实验结果有一个好的吻合,确定了 一组有效的MCM-41分子筛的势能参数(σ_(ww) = 0.265 nm,∈_(ww)/k = 190 K )。这为以后其他吸附质在MCM-41中吸附的预测奠定了基础、提供了依据。  相似文献   

18.
Four samples of MCM-41 mesoporous silicas whose average pore diameters are 2.4, 2.8, 3.2, and 3.6 nm were prepared using sodium orthosilicate and cationic surfactants of [CH(3)(CH(2))(n)N(CH(3))(3)]X (n=11, 13, 15, 17). These four samples were calcined at 1123 K in vacuo to obtain the dehydroxylated samples, which were further rehydroxylated at 298 K to obtain the rehydroxylated samples. The adsorption isotherms of nitrogen gas (77 K) for the 12 MCM-41 mesoporous silicas are of Type IVc, giving no adsorption hysteresis. On the other hand, the first adsorption isotherms of water vapor (298 K) for the dehydroxylated MCM-41 samples are quite different from those of nitrogen gas, giving the remarkable adsorption hysteresis. The second water isotherms for the rehydroxylated MCM-41 samples are of Type IV, showing slight hysteresis. Using the nitrogen isotherms, the relation between the pore size and carbon chain length of the surfactant has been determined, and the effect of dehydroxylation and rehydroxylation on the porous texture has been examined. Using the first and second water isotherms, the adsorption model of physisorbed waters adsorbed on the surface silanol groups has been proposed. From the pore size distribution curves of nitrogen and water, the presence of constrictions in the cylindrical pores has been predicted. Copyright 2000 Academic Press.  相似文献   

19.
In this work, batch adsorption experiments are carried out for crystal violet dye using mesoporous MCM-41 synthesized at room temperature and sulfate modified MCM-41 prepared by impregnation method using H2SO4 as sulfatising agent. The surface characteristics, pore structure, bonding behavior and thermal degradation of both the MCM-41 samples are characterized by nitrogen adsorption/desorption isotherms, X-ray diffraction (XRD) patterns, Fourier transform infrared (FT-IR) spectroscopy and thermo gravimetric analysis (TGA). The adsorption isotherm, kinetics and thermodynamic parameters are investigated for crystal violet (CV) dye using the calcined and sulfated MCM-41. Results are analysed using Langmuir, Freundlich and Redlich-Peterson isotherm models. It is found that the Freundlich model is an appropriate model to explain the adsorption isotherm. The highest adsorption capacity achieved is found to be 3.4×10−4 mol g−1 for the sulfated MCM-41. The percentage removal of crystal violet dye increases with increase in the pH for both the MCM-41 adsorbents. Kinetics of adsorption is found to follow the second-order rate equation. From the thermodynamic investigation, it is evident that the adsorption is exothermic in nature.  相似文献   

20.
Adsorption of nitrobenzene from aqueous solution by MCM-41   总被引:3,自引:0,他引:3  
Adsorption of nitrobenzene onto mesoporous molecular sieves (MCM-41) from aqueous solution has been investigated systematically using batch experiments in this study. Results indicate that nitrobenzene adsorption is initially rapid and the adsorption process reaches a steady state after 1 min. The adsorption isotherms are well described by the Langmuir and the Freundlich models, the former being found to provide the better fit with the experimental data. The effects of temperature, pH, ionic strength, humic acid, and the presence of solvent on adsorption processes are also examined. According to the experimental results, the amount of nitrobenzene adsorbed decreases with an increase of temperature from 278 to 308 K, pH from 1.0 to 11.0, and ionic strength from 0.001 to 0.1 mol/L. However, the amount of nitrobenzene adsorbed onto MCM-41 does not show notable difference in the presence of humic acid. The presence of organic solvent results in a decrease in nitrobenzene adsorption. The desorption process shows a reversibility of nitrobenzene adsorption onto MCM-41. Thermodynamic parameters such as Gibbs free energy are calculated from the experimental data at different temperatures. Based on the results, it suggests that the adsorption is primarily brought about by hydrophobic interaction between nitrobenzene and MCM-41 surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号