首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
摩尔响应值与分子连接性指数关系的再研究   总被引:3,自引:2,他引:1  
苏红伟  吴宁生  史文娟 《色谱》1997,15(3):180-184
对链烷烃、链烷醇、苯系列和酮类化合物选择适当的分子连接性指数,用摩尔响应值对它们进行多元线性回归,结果表明两者之间存在良好的相关性。  相似文献   

2.
The synthesis of dihydrocytosines 4 from 3-aminopropionitriles 1 has been broadened and the dihydrocytosines themselves have now been successfully converted to cytosines 9 . Unsubstituted 3-(H, alkyl or aryl) aminopropionitriles ( 1 , X = H) convert with cyanate to 1-(H, alkyl or aryl)-1-(2-cyanoethyl)ureas ( 2 , X = H), which in turn easily cyclize with anhydrous strong acid or base to 1-(H, alkyl or aryl)-5,6-dihydrocytosines ( 4 , X = H). The 1-arylaminopropionitriles ( 1 , X = H) which are poorly reactive with cyanic acid combine readily with benzoylureas to form 3-benzoyl-1-(2-cyanoethyl)-1-arylureas ( 3 , X = H). These benzoylureas likewise cyclize with strong acid or base but with simultaneous elimination of the benzoyl moiety to yield the 1-aryldihydrocytosines 4 (X = H). Amines have successfully been added to 2-chloroacrylonitrile to yield 2-chloro-3-(amino and substituted amino)propionitriles ( 1 , X = Cl). These 2-chloropropionitriles also could be converted with cyanate or benzoylisocyanate to ureas and benzoylureas, respectively (1-(H or alkyl)-1-(2-chloro-2-cyanoethyl)ureas ( 2 , X = Cl) or 1-(H or alkyl)-1-(2-chloro-2-cyanoethyl)-3-benzoylureas ( 3 , X = Cl). The chlorine substituted ureas were unstable especially to base and to heat but with anhydrous acid were cyclized in high yield to 1-(H or alkyl)-5-chloro-5,6-dihydro-cytosines ( 4 , X = Cl). Direct chlorination of unsubstituted dihydrocytosines 4 (X = H) did not afford these same 5-chlorodihydrocytosines 4 (X = Cl) under any conditions investigated. 1-Ethyl-5,6-dihydrocytosine ( 4b ) as the cation (hydrobromide) is converted directly in good yield to 1-ethylcytosine hydrobromide ( 7 ) by bromine in nitrobenzene at 140-160° in a concomitant bromination dehydrobromination reaction. 1-(Alkyl or aryl)-5,6-dihydrocytosines ( 4 , X = H) are halogenated at low temperature in the presence of base to form (N3 or N4)halogenodihydrocytosines ( 8 , R = H). The N-chlorodihydrocytosines 8 are stable. The N-bromo and N-iodo compounds isomerize spontaneously to 5-halogeno-5,6-dihydrocytosines ( 4 , X = Br, I; R = H). The 5-halogeno-5,6-dihydrocytosines 4 (X = Cl, Br, I) whether from cyclization or direct halogenation are readily dehydrohalogenated to the corresponding cytosines 9.  相似文献   

3.
Scalemic mixtures of chiral anisyl fenchols with different ortho-substituents (X) in the anisyl moieties [X = H (1), Me (2), SiMe3 (3) and tBu (4)] are employed as pre-catalysts in enantioselective additions of diethylzinc to benzaldehyde. While a remarkable asymmetric depletion is apparent for X = H and Me, a linear relationship between the enantiomeric purity of the chiral source and the product 1-phenylpropanol is observed for X = SiMe3 and tBu. X-ray single crystal analyses show that racemic methylzinc fencholates obtained from 1 (X = H) and 2 (X = Me) yield homochiral dimeric complexes, while for 3 (X = SiMe3) and 4 (X = tBu) the heterochiral dimeric alkylzinc structures are formed. The enantiopure fenchols 1-4 all yield homochiral dimeric methylzinc complexes. Computed relative energies of homo- and heterochiral fencholate dimers with X = H and Me reveal an intrinsic preference for the formation of the homochiral dimers, consistent with the observed negative NLE. In contrast, similar stabilities are computed for homo- and heterochiral complexes of ligands 3 (X = SiMe3) and 4 (X = tBu), in agreement with the absence of a nonlinear effect for bulky ortho-subsituents.  相似文献   

4.
Volatile 1,1-dimethyl-2-(trimethylsilyl)hydrazido(1-) complexes of niobium, tantalum, molybdenum, and tungsten have been synthesized and fully characterized for use as precursors in their chemical vapor deposition to metal nitrides. Different reaction patterns were observed in the hydrazinolysis of imido complexes of those four metals with (trimethylsilyl)dimethylhydrazine HN(SiMe3)NMe2 (H-TDMH). [Ta(NtBu)Cl3Py2] gave [Ta(TDMH)2Cl3] (1) with loss of the imido functionality, and [M(NtBu)2Cl2Py2] gave [M(NtBu)2(TDMH)Cl] (M = W, 8a; Mo, 8b). Reactions of both types of metal imido complexes with magnesium hydrazides produced [M(NtBu)(TDMH)2X] (M = Ta, X = Cl, 2a; X = Br, 3a; M = Nb, X = Cl, 2b; X = Br, 3b) and [M(NtBu)2(TDMH)X] (M = W, X = Cl, 8a; X = Br, 9a; M = Mo, X = Cl, 8b; X = Br, 9b). Halogen substitution reactions at 2 and 3 by -NMe2, -NHtBu, and CH2Ph groups as well as imido ligand replacement reactions have been investigated. The results of crystal structure determinations of 1, 4a, 5a, 6a, 7b, and 9b are presented.  相似文献   

5.
The complexes MX5(THF) (M = Nb, X = Cl, 2a; M = Ta, X = F, 2c, X = Cl, 2d) and [MX4(THF){O(CH2)4O(CH2)3CH2)}][MX6] (M = Nb, X = Cl, 3a; M = Ta, X = Cl, 3d, X = Br, 3e, X = I, 3f) result from reactions of MX5 with 0.5 and 1.5 equiv of THF, respectively. Compounds 3 contain the unprecedented 4-(tetrahydrofuran-1-ium)-butan-1-oxo ligand and are likely to play a role in the course of THF polymerization catalyzed by MX5. The addition of L (L = 2,5-dimethyltetrahydrofuran, tetrahydropyran, 1,4-dioxane) to MX5 results in the formation of the hexacoordinated complexes MX5(L). The molecular structures of 2d, 3d, and NbCl5(dioxane), 6a, have been ascertained by X-ray diffraction studies.  相似文献   

6.
本工作试图把碳钯化反应发展到双主主烯丙基体系,以考察通过杂原子导向的远端区域专一性的反应以及缩硫酮官能团对硫钯化反应的导向作用.  相似文献   

7.
Thermally robust materials of the M(5-X-pyrimidin-2-olate)2 type [M = Co, X = Cl (1(Cl)), X = Br (1(Br)), X = I (1(I)); M = Zn, X = Cl (2(Cl)), X = Br (2(Br)), X = I (2(I))] have been synthesized. Their X-ray powder diffraction structural characterization has revealed that they crystallize as I2d diamondoid frameworks, isomorphous to those of the pristine [M(pyrimidin-2-olate)2]n analogues (1(H), M = Co; 2(H), M = Zn). The magnetic measurements of the 1(X) series at magnetic fields of 100, 300, and 5000 Oe reveal a weak ferromagnetic ordering taking place below the Néel temperature (T(N) approximately 20 K), arising from spin canting phenomena of the antiferromagnetically coupled cobalt centers. Moreover, magnetic hysteresis studies carried out on the 1(X) series at 2 K reveal a strong dependence of both the coercive field H(coer) (2500, 1000, 775, and 500 Oe for 1(Br), 1(Cl), 1(I), and 1(H), respectively) and the remnant magnetization M(rem) (0.0501 mu(B) for 1(Br) and 1(Cl), 0.0457 mu(B) for 1(I), and 0.0358 mu(B) for 1(H)) on the 5-substituent of the pyrimidin-2-olates. The molecular alloys [Co(5-Y-pyrimidin-2-olate)2] (Y = Cl/Br, 1(Cl/Br)) and [Co(5-Y'-pyrimidin-2-olate)2] (Y' = Br/I, 1(Br/I)) have also been prepared and characterized, proving that they have intermediate properties. These materials combine interesting functional properties, such as chemical inertness, magnetism, photoluminescence, and (although weak) SHG activity.  相似文献   

8.
Kinetics and stereochemical studies have been carried out on the reactions of the Z and E isomers of O-methylbenzohydroximoyl halides [1Z and 1E, ArC(X)=NOCH(3)] with sodium methoxide in 9:1 DMSO-methanol. The reactions of methoxide ion with hydroximoyl fluorides (X = F) are stereospecific. The reaction with 1Z (X = F) gives only the Z substitution product (1Z, X =OCH(3)). The reaction of methoxide ion with 1E (X = F) is less selective, giving ca. 85% E substitution product. The Hammett rho-values for the Z and E isomers (X = F) are +2.94 and +3.30, respectively. The element effects for 1Z (Ar = C(6)H(5)) are 2.21 (X = Br):1.00 (X = Cl):79.7 (X = F). The 1E element effects are (Ar = C(6)H(5)) 1.00 (X = Cl):18.3 (X = F) and (Ar = 4-CH(3)OC(6)H(4)) 1.97 (X = Br):1.00 (X = Cl):12.1 (X = F). The entropies of activation for these reactions are negative (for example, DeltaS() = -15 eu for 1Z and DeltaS() = -14 eu for 1E, Ar = 4-CH(3)OC(6)H(4), X = F). These experimental observations are consistent with a mechanism proceeding through a tetrahedral intermediate. Ab initio calculations were carried out to help explain the stereospecificity of these reactions. These calculations indicate that the tetrahedral intermediate from the Z isomer undergoes rapid elimination to the Z substitution product before stereomutation can take place. These calculations also show that the lowest barrier for rotation around the carbon-nitrogen single bond in the tetrahedral intermediate derived from 1E leads to an intermediate that eliminates fluoride ion to give E product.  相似文献   

9.
The tripodal ligands NP(3)(tris[2-(diphenylphosphino)ethyl]amine) and PP(3)(tris[2-(diphenylphosphino)ethyl]phosphine), form five-coordinate [Pd(NP(3))X]X [X = Cl (1), Br (2)], [M(PP(3))X]X [M = Pd: X = Cl (4), Br (5), I (6); M = Pt, X = Cl (7), Br (8), I (9)] and four-coordinate[Pd(NP(3))I]I (3) complexes containing three fused rings around the metal. The interaction between Au(tdg)X (tdg = thiodiglycol; X = Cl, Br) or AuI and the respective ionic halo complexes 1-9 in a 1:1 stoichiometric ratio occurs via a ring-opening reaction with formation of the heterobimetallic systems PdAu(NP(3))X(3)[X = Cl (11), Br (12), I (13)], [MAu(PP(3))X(2)]X [M = Pd: X = Cl (14), Br (15), I (16); M = Pt: X = Cl (17), Br (18), I (19)]. The cations of complexes 17 and 18 were shown, by X-ray diffraction, to contain a distorted square-planar Pt(II) arrangement (Pt(P(2)P)X) where PP(3) is acting as tridentate chelating ligand and an almost linear PAuX moiety bearing the dangling phosphorus formed in the ring-opening process. PPh(3) coordinates to Au(I) and not to M(II) when added in excess to 14 and 17. Complexes 14-17 and [Pt(P(4))](BPh(4))(2) (10) (P4=linear tetraphosphine) also react with A(I), via chelate ring-openings to give MAu(2)(PP(3))X(4) [M = Pd: X = Cl (20), Br (21), I (22); M = Pt: X = Cl (23)] and [Pt(2)Au(2)(mu-Cl)(2)(mu-P(4))(2)](BPh(4))(4) (24), respectively.  相似文献   

10.
In this study we present the synthesis and conformational analysis of mono- and disubstituted ferrocene bioconjugates bearing dipeptide chains (Boc-AA-AA-Fn-X, AA=Gly, l-Ala, l-Val). The conformational preferences of novel aminoferrocene derived conjugates with X=H, as well as their 1-acetyl analogues (X=COMe), were investigated by spectroscopic techniques (IR, NMR and CD) and corroborated by DFT calculations. Chirally organized structures, stabilized through intrachain hydrogen bonds, prevail in solution when X=H. The resulting 10-membered hydrogen-bond ring is destabilized by heteroannular introduction of an acetyl group when X=COMe.  相似文献   

11.
Substituent interaction energy (SIE) was defined as the energy change of the isodesmic reaction X-spacer-Y + H-spacer-H --> X-spacer-H + H-spacer-Y. It was found that this SIE followed a simple equation, SIE(X,Y) = -ksigma(X)sigma(Y), where k was a constant dependent on the system and sigma was a certain scale of electronic substituent constant. It was demonstrated that the equation was applicable to disubstituted bicyclo[2.2.2]octanes, benzenes, ethylenes, butadienes, and hexatrienes. It was also demonstrated that Hammett's equation was a derivative form of the above equation. Furthermore, it was found that when spacer = nil the above equation was mathematically the same as Pauling's electronegativity equation. Thus it was shown that Hammett's equation was a derivative form of the generalized Pauling's electronegativity equation and that a generalized Pauling's electronegativity equation could be utilized for diverse X-spacer-Y systems. In addition, the total electronic substituent effects were successfully separated into field/inductive and resonance effects in the equation SIE(X,Y) = -k(1)F(X)F(Y) - k(2)R(X)R(Y) - k(3)(F(X)R(Y) + R(X)F(Y)). The existence of the cross term (i.e., F(X)R(Y) and R(X)F(Y)) suggested that the field/inductive effect was not orthogonal to the resonance effect because the field/inductive effect from one substituent interacted with the resonance effect from the other. Further studies on multi-substituted systems suggested that the electronic substituent effects should be pairwise and additive. Hence, the SIE in a multi-substituted system could be described using the equation SIE(X1, X2, ..., Xn) = Sigma(n-1)(i=1)Sigma(n)(j=i+1)k(ij)sigma(X)isigma(X)j.  相似文献   

12.
TheCrystalStructureofHexamolybdenumHalideNaMo_6X_9C_(l4)(X=Cl_n+I_(1-n))bySolidStateReaction¥GuoGuo-Cong;ZhuangHong-Hui;WangMan?..  相似文献   

13.
Experimental dipole moments and infinite-dilution Kerr constants for 2-fluoro-, 2-chloro and 2-bromo-acetophenone (CH3COC6H4X; X = F, Cl, Br) as solutes in CCl4 at 25°C are analysed, yielding the following effective dihedral angles and percentage abundances of the less stable XO-cis conformers: X = F, 10 ± 10°, 5 ± 5%; X = Cl, 40 ± 5°, 10 ± 5%; and X = Br, 65 ± 10°, 25 ± 10%.  相似文献   

14.
Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 degrees C and ionic strength mu=0.1 (1M NaCl). The complexes are found to have the formulae [M(HL)2](X)n.yH2O (where M=Fe(III) (X=Cl, n=3, y=3), Co(II) (X=Cl, n=2, y=1.5), Ni(II) (X=Cl, n=2, y=1) and UO2(II) (X=NO3, n=2, y=0)) and [M(L)2] (where M=Cu(II) (X=Cl) and Zn(II) (X=AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

15.
 利用分子路径指数矢量表示烷烃分子结构方法 ,结合多元线性回归算法及反传神经网络算法 ,对烷烃摩尔响应值进行处理 ,获得了比文献更佳的预测效果 ,交互校验的相关系数达 0 96 8以上。  相似文献   

16.
Metathesis reactions of the alkali metal formamidinates M(RNC(H)NR), M = Li or K; R = C(6)H(3)-2,6-Pr(i)(2) (L(1)), C(6)H(3)-2,6-Et(2) (L(2)); C(6)H(2)-2,4,6-Me(3) (L(3)), C(6)H(3)-2,6-Me(2) (L(4)) or C(6)H(4)-2-Ph (L(5)), with BiX(3) (X = Cl or Br) gave a range of bismuth(iii) formamidinate complexes [Bi(L)Br(micro-Br)(thf)](2) (L = L(1), L(4)), [{Bi(L(1))Cl(2)(thf)}(2)Bi(L(1))Cl(2)], [Bi(L)(2)X] (L = L(2), L(5), X = Br; L = L(1), X = Cl), and [Bi(L)(3)] (L = L(2), L(3)). An analogous organometallic complex Bi(L(1))(2)Bu(n) was also isolated as a side product in one instance. Structural characterisation of the di-halide complexes show symmetrical dimers for X = Br, with two bromide bridges, and a coordinated thf molecule on each Bi atom, whereas for X = Cl a thf deficient species was crystallised, and has a weakly associated trinuclear array with two coordinated thf molecules per three Bi atoms. Complexes of the form Bi(L)(2)X (X = Br, Cl, Bu(n)) and Bi(L)(3) all have monomeric structures but the Bi(L)(3) species show marked asymmetry of the formamidinate binding, suggesting that they have reached coordination saturation.  相似文献   

17.
The treatment of Cr(III)(X(4)SQ)(3) (SQ = o-semiquinonate; X = Cl and Br) with acetonitrile affords trans-Cr(III)(X(4)SQ)(X(4)Cat)(CH(3)CN)(2) (X = Cl (1) and Br (2)). In the presence of 2,2'-bipyridine (bpy) or 3,4,7,8-tetramethyl-1,10-phenanthrene (tmphen), the reaction affords Cr(III)(X(4)SQ)(X(4)Cat)(bpy).nCH(3)CN (X = Cl, n = 1 (3); X = Br, n = 0.5 (4)) or Cr(III)(X(4)SQ)(X(4)Cat)(tmphen) (X = Cl (5) and Br (6)), respectively. All of the complexes show a ligand-based mixed-valence (LBMV) state with SQ and Cat ligands. The LBMV state was confirmed by the presence of the interligand intervalence charge-transfer band. Spectroscopic studies in several solvent media demonstrate that the ligand dissociation included in the conversion of Cr(III)(X(4)SQ)(3) to 1-6 occurs only in solvents with relatively high polarity. On the basis of these results, the effects of solvent media were examined and an equilibrium, Cr(III)(X(4)SQ)(3) <--> Cr(III)(X(4)BQ)(X(4)SQ)(X(4)Cat) (BQ = o-benzoquinone), is proposed by assuming an interligand electron transfer induced by solvent polarity.  相似文献   

18.
Square-planar complexes with the formula [Pt(L(2))(L(1))](X)(2) x nH(2)O, where L(1) is S-2-aminomethylpyrrolidine (S-pyrda) or 2-aminomethylpiperidine (pipda) and L(2) is diammine (X=Cl), cyclobutane-1,1-dicarboxylato (cbdca) (X=none), 2,2'-bipyridine (bpy) (X=NO(3)), or 1,10-phenanthroline (phen) (X=Cl), were prepared and the nature of the coordination of L(1) was examined by (1)H-NMR spectroscopy and X-ray crystallography. These 2-aminomethylazacycloalkane derivatives form five-membered chelate rings condensed with an azacycloalkane ring in cis- or trans-configurations. The (1)H-NMR spectrum of complexes with S-pyrda as L(1) were consistent with cis-condensed rings in an S(N) conformation with any of L(2) group. However, (1)H-NMR spectra of the complexes with pipda as L(1) indicated trans-fused successive rings for the diammine and cbdca as L(2), but spectra for bpy and phen as L(2) were consistent with a conformation having cis-fused successive rings. X-Ray crystallography data for the two complexes with pipda as L(1) and cbdca (1) and bpy (2) as L(2) confirms the different coordination behavior in the solid state.  相似文献   

19.
The 0 K dissociative ionization onsets of C2H3X --> C2H3(+) + X (X = Cl, I) are measured by threshold photoelectron-photoion coincidence spectroscopy. The heats of formation of C2H3Cl (Delta H(f,0K)(0) = 30.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 22.6 +/- 3.2 kJ mol(-1)) and C2H3I (Delta(H f,0K)(0) = 140.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 131.2 +/- 3.2 kJ mol(-1)) and C- X bond dissociation enthalpies as well as those of their ions are determined. The data help resolve a longstanding discrepancy among experimental values of the vinyl chloride heat of formation, which now agrees with the latest theoretical determination. The reported vinyl iodide heat of formation is the first reliable experimental determination. Additionally, the adiabatic ionization energy of C2H3I (9.32 +/- 0.01 eV) is measured by threshold photoelectron spectroscopy.  相似文献   

20.
The complexes trans-[Rh(X)(XNC)(PPh 3) 2] (X = Cl, 1; Br, 2; SC 6F 5, 3; C 2Ph, 4; XNC = xylyl isocyanide) combine reversibly with molecular oxygen to give [Rh(X)(O 2)(XNC)(PPh 3) 2] of which [Rh(SC 6F 5)(O 2)(XNC)(PPh 3) 2] ( 7) and [Rh(C 2Ph)(O 2)(XNC)(PPh 3) 2] ( 8) are sufficiently stable to be isolated in crystalline form. Complexes 2, 3, 4, and 7 have been structurally characterized. Kinetic data for the dissociation of O 2 from the dioxygen adducts of 1- 4 were obtained using (31)P NMR to monitor changes in the concentration of [Rh(X)(O 2)(XNC)(PPh 3) 2] (X = Cl, Br, SC 6F 5, C 2Ph) resulting from the bubbling of argon through the respective warmed solutions (solvent chlorobenzene). From data recorded at temperatures in the range 30-70 degrees C, activation parameters were obtained as follows: Delta H (++) (kJ mol (-1)): 31.7 +/- 1.6 (X = Cl), 52.1 +/- 4.3 (X = Br), 66.0 +/- 5.8 (X = SC 6F 5), 101.3 +/- 1.8 (X = C 2Ph); Delta S (++) (J K (-1) mol (-1)): -170.3 +/- 5.0 (X = Cl), -120 +/- 13.6 (X = Br), -89 +/- 18.2 (X = SC 6F 5), -6.4 +/- 5.4 (X = C 2Ph). The values of Delta H (++) and Delta S (++) are closely correlated (R (2) = 0.9997), consistent with a common dissociation pathway along which the rate-determining step occurs at a different position for each X. Relative magnitudes of Delta H (++) are interpreted in terms of differing polarizabilities of ligands X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号