首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peristaltic flow of a Johnson-Segalman fluid in a planar channel is investigated in an induced magnetic field with the slip condition.The symmetric nature of the flow in a channel is utilized.The velocity slip condition in terms of shear stresses is considered.The mathematical formulation is presented,and the equations are solved under long wavelength and low Reynolds number approximations.The perturbation solutions are established for the pressure,the axial velocity,the micro-rotation component,the stream function,the magnetic-force function,the axial induced magnetic field,and the current distribution across the channel.The solution expressions for small Weissenberg numbers are derived.The flow quantities of interest are sketched and analyzed.  相似文献   

2.
The temporal stability on inviscid compressible swirling flow between two concentric cylinders is investigated. First, a linearized differential equation is derived. Two stability criteria are derived for compressible swirling flow by an analytic method analogous to Ludwieg ’s method. A finite-difference numerical method is then used to solve the eigenvalue problem of this differential equation, to get temporal growth rate and to check these stabilitv criteria derived. Finally.The effect of compressibility for stability is disscused.  相似文献   

3.
In the present study, we investigated the effects of slip and induced magnetic field on the peristaltic flow of a Jeffrey fluid in an asymmetric channel. The governing two‐dimensional equations for momentum, magnetic force function and energy are simplified by using the assumptions of long wavelength and low but finite Reynolds number. The reduced problem has been solved by Adomian decomposition method (ADM) and closed form solutions have been presented. Further, the exact solution of the proposed problem has also been computed and the mathematical comparison shows that both solutions are almost similar. The effects of pertinent parameters on the pressure rise per wavelength are investigated using numerical integration. The expressions for pressure rise, friction force, velocity, temperature, magnetic force function and the stream lines against various physical parameters of interest are shown graphically. Moreover, the behavior of different kinds of wave shape are also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical ex- pression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.  相似文献   

5.
This present analysis discusses the mixed convection boundary layer flow of a magnetohydrodynamic second grade fluid over an unsteady permeable stretching sheet. The time‐dependent stretching velocity and the surface temperature are chosen. Series solutions of the governing boundary value problems are obtained by employing homotopy analysis method. Convergence of the obtained solution is explicitly discussed. The dependence of velocity and temperature profiles on the various quantities is shown and discussed by plotting graphs. Skin friction coefficient and the local Nusselt number tabulated and analyzed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This study is concerned with peristaltic flow of a magnetohydrodynamic (MHD) fluid in an asymmetric channel. Asymmetry in the flow is induced by waves on the channel walls having different amplitudes and phase. A systematic approach based on an expansion of Deborah number is used for the solution series. Analytic expressions have been developed for the stream function, axial velocity and axial pressure gradient. The pressure rise over a wavelength has been addressed through numerical integration. Particular attention has been given to the effects of Hartman number and Deborah number on the pressure rise over a wavelength and the trapping phenomenon. Several limiting solutions of interest are obtained as the special cases of the presented analysis by taking the appropriate parameter(s) to be zero. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The nonlinear partial differential equations are transformed into ordinary differential equations via the similarity transformation. The transformed boundary layer equations are solved numerically using the shooting method. Numerical results are obtained for various magnetic parameters and Prandtl numbers. The effects of the induced magnetic field on the skin friction coefficient, the local Nusselt number, the velocity, and the temperature profiles are presented graphically and discussed in detail.  相似文献   

8.
This work is concerned with the peristaltic transport of the Johnson-Segalman fluid in an asymmetric channel with convective boundary conditions. The mathematical modeling is based upon the conservation laws of mass, linear momentum, and energy. The resulting equations are solved after long wavelength and low Reynolds number are used. The results for the axial pressure gradient, velocity, and temperature profiles are obtained for small Weissenberg number. The expressions of the pressure gra-dient, velocity, and temperature are analyzed for various embedded parameters. Pumping and trapping phenomena are also explored.  相似文献   

9.
In the present article, we have studied the effects of inclined magnetic field on the peristaltic flow of Jeffrey fluid through the gap between two coaxial inclined tubes. The inner tube is rigid, whereas the outer tube has sinusoidal wave traveling down its wall. The governing equations are simplified using long wave length and low Reynolds number approximations. Exact and numerical solutions have been derived for velocity profile. The expressions for pressure rise and friction force are calculated using numerical integration. Graphical results and trapping phenomenon is presented at the end of the article to see the physical behavior of different parameters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow of a Newtonian fluid through a slowly varying pipe is obtained in the first perturbation strategy. Second, the viscoelastic parameter is selected as the small perturbation parameter in the second perturbation strategy to solve the asymptotic solution of the flow of a J-S fluid through a slowly varying pipe. Finally, the parameter effects, including the axial distance, the slowly varying angle, and the Reynolds number, on the velocity distributions are analyzed. The results show that the increases in both the axial distance and the slowly varying angle make the axial velocity slow down. However, the radial velocity increases with the slowly varying angle, and decreases with the axial distance. There are two special positions in the distribution curves of the axial velocity and the radial velocity with different Reynolds numbers, and there are different trends on both sides of the special positions. The double perturbation strategy is applicable to such problems with the flow of a non-Newtonian fluid through a slowly varying pipe.  相似文献   

11.
The stability of mechanical equilibrium of a horizontal layer of conducting fluid in the presence of a magnetic field rotating in a horizontal plane is considered. Both finite field rotation frequencies and the limiting case of high frequencies are investigated. It is shown that the magnetic field stabilizes the equilibrium. The dependence of the critical perturbation wavelength on the field strength is non-monotonic, and with increase in the magnetic field strength the mode of most dangerous perturbations changes from long-to short-wave type. Nonlinear three-dimensional convection regimes are calculated numerically. It is found that at finite supercriticalities and a sufficiently strong magnetic field the rolls and the hexagonal cells may be stable simultaneously.  相似文献   

12.
The peristaltic flow of a Jeffrey fluid in an asymmetric channel is studied under long wavelength and low Reynolds number assumptions. The fluid is electrically conducting by a transverse magnetic field. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The flow is investigated in a wave frame of reference moving with the velocity of the wave. The expressions for stream function, axial velocity and axial pressure gradient have been obtained. The effects of various emerging parameters on the flow characteristics are shown and discussed with the help of graphs. The pumping characteristics, axial pressure gradient and trapping phenomenon have been studied. Comparison of various wave forms (namely sinusoidal, triangular, square and trapezoidal) on the flow is discussed.  相似文献   

13.
A study is presented for magnetohydrodynamics (MHD) flow and heat transfer characteristics of a viscous incompressible electrically conducting micropolar fluid in a channel with stretching walls. The micropolar model introduced by Eringen is used to describe the working fluid. The transformed self similar ordinary differential equations together with the associated boundary conditions are solved numerically by an algorithm based on quasi-linearization and multilevel discretization. The effects of some physical parameters on the flow and heat transfer are discussed and presented through tables and graphs. The present investigations may be beneficial in the flow and thermal control of polymeric processing.  相似文献   

14.
We investigate the influence of an induced magnetic field on the peristaltic flow of an incompressible fourth grade fluid in a symmetric channel with heat transfer. Adopting long wavelength, low Reynolds number and small Deborah number assumptions we derive the solutions for stream function, pressure gradient, temperature, magnetic force function, induced magnetic field and current density. Qualitative agreement is demonstrated between the graphs and expected observations.  相似文献   

15.
Mixed convective flow and heat transfer in a vertical channel with one region filled with conducting fluid and another region with non-conducting fluid is analyzed. The viscous and Ohmic dissipation terms are included in the energy equation. Three types of thermal boundary conditions such as isothermal-isothermal, isoflux-isothermal and isothermal-isoflux for the left-right walls of the channel are prescribed. Analytical solutions are found for the governing equations using the regular perturbation method. A selected set of graphical results illustrating the effects of various parameters involved in the problem are presented and discussed.  相似文献   

16.
In this paper, the effects of slip and heat transfer are studied on the peristaltic transport of a magnetohydrodynamic (MHD) fourth grade fluid. The governing equations are modeled and solved under the long wavelength approximation by using a regular perturbation method. Explicit expressions of solutions for the stream function, the velocity, the pressure gradient, the temperature, and the heat transfer coefficient are presented. Pumping and trapping phenomena are analyzed for increasing the slip parameter. Further, the temperature profiles and the heat transfer coefficient are observed for various increasing parameters. It is found that these parameters considerably affect the considered flow characteristics. Comparisons with published results for the no-slip case are found in close agreement.  相似文献   

17.
Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order. A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time. The free stream velocity follows an exponentially increasing or decreasing small perturbation law. Using the approximate method, the expressions for the velocity microrotation, temperature, and concentration are obtained. Futher, the results of the skin friction coefficient, the couple stress coefficient, and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.  相似文献   

18.
In this article, we investigate the influence of heat and mass transfer on the peristaltic flow of magnetohydrodynamic second‐order fluid in a channel when the induced magnetic field effects are present. Problem formulation in a wave frame of reference is presented. The governing nonlinear analysis is carried out under the assumption of small wave number. Explicit expressions of the pressure gradient, the stream function, the magnetic force function, the axial induced magnetic field, the current density distribution, the temperature, and the concentration distribution are derived. The effects of embedded parameters are also examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
An incompressible flow in a porous channel with expanding or contacting walls in the presence of a transverse magnetic field is considered. Using similarity transformations, the governing equations are reduced to the nonlinear ordinary differential equations. The exact similar solutions for the different cases of the expansion ratio and the Hartmann number are obtained with a singular perturbation method, and the associated behavior is discussed in detail.  相似文献   

20.
ABSTRACT

In this paper, effects of two wires magnetic field on heat transfer and biomagnetic fluid flow in an aneurysm have been investigated using the ferrohydrodynamics model. Using the finite volume method and the SIMPLE algorithm, the governing equations have been discretised. Simulations have been carried out for both conditions of wires in the same and opposite directions and different magnetic numbers of 41 and 82. Results show that the magnetic field causes a decrease in heat transfer of blood flow towards the walls. Moreover, major energy loss or pressure drop, arising from mean wall shear stress, decreases but local or minor energy loss, arising from aneurysm vortexes, increases. Furthermore, risk factors of aneurysm rupture is decreased under the effect of the magnetic field. The effective contact surface between drug-coated magnetic nanoparticles and the aneurysm tissue may increase and residence time of drug on the cells of the region would decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号