首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of isocyanide complexes, [Fe(Porphyrinoid)((t)BuNC)(2)](+), were synthesized and examined for their physicochemical properties. The molecular structure of the bis((t)BuNC) adduct of the iron(III) porphycene (1) and corrphycene (2) adopting the (d(xy))(2)(d(xz), d(yz))(3) ground state were determined for the first time. Furthermore, 1 and 2 showed unusual crossover phenomena between different electron configurations, (d(xy))(2)(d(xz), d(yz))(3) ground state and (d(xz), d(yz))(4)(d(xy))(1) ground state, by the addition of the external stimuli.  相似文献   

2.
Hemophore HasA is a 19 kDa iron(III) hemoprotein that participates in the shuttling of heme to a specific membrane receptor. In HasA, heme iron has an original coordination environment with a His/Tyr pair as axial ligands. Recently developed two-dimensional protonless (13)C-detected experiments provide the sequence-specific assignment of all but three protein residues in the close proximity of the paramagnetic center, thus overcoming limitations due to the short relaxation times induced by the presence of the iron(III) center. Mono-dimensional (13)C and (15)N experiments tailored for the detection of paramagnetic signals allow the identification of resonances of the axial ligands. These experiments are used to characterize the conformational features and the electronic structure of the heme iron(III) environment. The good complementarity among (1)H-, (13)C-, and (15)N-detected experiments is highlighted. A thermal high-spin/low-spin equilibrium is observed and is related to a modulation of the strength of the coordination bond between the iron and the Tyr74 axial ligand. The key role of a neighboring residue, His82, for the stability of the axial coordination and its involvement in the heme delivery to the receptor is discussed.  相似文献   

3.
The 1H NMR spectra of iron(III) 5-ethynyl-10,15,20-tri(p-tolyl)porphyrin [(ETrTP)Fe(III)X(n)], iron(III) 5-(phenylethynyl)-10,15,20-tri(p-tolyl)porphyrin [(PETrTP)Fe(III)X(n)], iron(III) 5-(phenylbutadiynyl)-10,15,20-tri(p-tolyl)porphyrin [(PBTrTP)Fe(III)X(n)], iron(III) 5,10,15,20-tetra(phenylethynyl)porphyrin [(TPEP)Fe(III)X(n)], iron(III) 1,4-bis-[10,15,20-tri(p-tolyl)porphyrin-5-yl]-1,3-butadiyne {[(TrTP)Fe(III)X(n)]2 B}, and 5,10,15-triphenylporphyrin [(TrPP)Fe(III)X(n)] have been studied to elucidate the impact of meso-ethynyl substitution on the electronic structure and spin density distribution of high-spin (X = Cl-, n = 1) and low-spin (X = CN-, n = 2) derivatives. The meso substituents, i.e., ethynyl, phenylethynyl, and phenylbutadiynyl, provided insight into the efficiency of spin density delocalization along structural elements that are typically applied to transmit electronic effects along multipart polyporphyrinic systems. The positive spin density localized at the meso-carbon of high-spin iron(III) ethynylporphyrins is effectively delocalized along the ethyne or butadiyne fragment as illustrated by the comparison of isotropic shifts of C(meso)-H and -CC-H determined for (TrPP)Fe(III)Cl (-82.6 ppm, 293 K) and (ETrTP)Fe(III)Cl (-49.5 ppm, 298 K). The replacement of the ethynyl hydrogen by phenyl or phenylethynyl provided evidence for the pi spin density distribution around the introduced phenyl ring. An analysis of the isotropic shifts for the low-spin bis-cyanide iron(III) porphyrins series reveals the analogous mechanism of spin density transfer. Treatment of high-spin [(TrTP)Fe(III)Cl]2 B with a base resulted in formation of the cyclic [(TrTP)Fe(III)OFe(III)(TrTP)B]2 complex linked by two mu-oxo bridges. (TPEP)H2 has been characterized by X-ray crystallography as a porphyrin dication where two molecules of trifluoroacetic acid associate with two coordinated trifluoroacetate anions. The X-ray structure of bis-tetrahydrofuran 1,4-bis[10,15,20-tri(p-tolyl)porphyrinatozinc(II)-5-yl]-1,3-butadiyne complex {[(TrTP)Zn(II)(THF)]2 B} reveals two parallel, non-coplanar [(TrTP)Zn(THF)] subunits linked by the linear butadiyne moiety.  相似文献   

4.
5.
We have recorded the powder EPR-spectra of some near octahedral iron(III) complexes with tridentate ligands donors and analysed their spectra with simple ligand field analysis and for some cases with the angular overlap model (AOM). We have determined the electron praramagnetic resonance (EPR) characteristic of bis 1,4,7-triazacyclonane iron(III)chloride at 4 K and found that it was similar to the characteristics of the so-called 'highly anisotropic low spin' complexes. We have recorded the powder spectra of bis (2,6-bis(benzimidazoly-2-yl)pyridine) iron(III) perchlorate and made an AOM-analyses of the structural similar complex bis-(2,6 (N-carbamoyl)-pyridine) iron(III). With a combination of ligand field analyses and AOM, we could determine the pi-donor properties of these ligands. The same approach have been used to determine the pi-donor properties of the hydroperoxo ligand. Finally we have recorded the powder EPR-spectrum of [Fe(CN)6]3- doped in K3[Co(CN)6] and [Co(NH3)6][Co(CN)6] at 4 and 100 K and in water at 4 K. The spectra are interpreted as the effect of a dynamic Jahn-Teller distortion.  相似文献   

6.
Substituent effects of the meso-aryl (Ar) groups on the 1H and 13C NMR chemical shifts in a series of low-spin highly saddled iron(III) octaethyltetraarylporphyrinates, [Fe(OETArP)L2]+, where axial ligands (L) are imidazole (HIm) and tert-butylisocyanide ((t)BuNC), have been examined to reveal the nature of the interactions between metal and porphyrin orbitals. As for the bis(HIm) complexes, the crystal and molecular structures have been determined by X-ray crystallography. These complexes have shown a nearly pure saddled structure in the crystal, which is further confirmed by the normal-coordinate structural decomposition method. The substituent effects on the CH2 proton as well as meso and CH2 carbon shifts are fairly small in the bis(HIm) complexes. Since these complexes adopt the (d(xy))2(d(xz), d(yz))3 ground state as revealed by the electron paramagnetic resonance (EPR) spectra, the unpaired electron in one of the metal dpi orbitals is delocalized to the porphyrin ring by the interactions with the porphyrin 3e(g)-like orbitals. A fairly small substituent effect is understandable because the 3e(g)-like orbitals have zero coefficients at the meso-carbon atoms. In contrast, a sizable substituent effect is observed when the axial HIm is replaced by (t)BuNC. The Hammett plots exhibit a large negative slope, -220 ppm, for the meso-carbon signals as compared with the corresponding value, +5.4 ppm, in the bis(HIm) complexes. Since the bis((t)BuNC) complexes adopt the (d(xz), d(yz))4(d(xy))1 ground state as revealed by the EPR spectra, the result strongly indicates that the half-filled dxy orbital interacts with the specific porphyrin orbitals that have large coefficients on the meso-carbon atoms. Thus, we have concluded that the major metal-porphyrin orbital interaction in low-spin saddle-shaped complexes with the (d(xz), d(yz))4(d(xy))1 ground state should take place between the d(xy) and a(2u)-like orbital rather than between the dxy and a(1u)-like orbital, though the latter interaction is symmetry-allowed in saddled D(2d) complexes. Fairly weak spin delocalization to the meso-carbon atoms in the complexes with electron-withdrawing groups is then ascribed to the decrease in spin population in the d(xy) orbital due to a smaller energy gap between the d(xy) and dpi orbitals. In fact, the energy levels of the d(xy) and dpi orbitals are completely reversed in the complex carrying a strongly electron-withdrawing substituent, the 3,5-bis(trifluoromethyl)phenyl group, which results in the formation of the low-spin complex with an unprecedented (d(xy))2(d(xz), d(yz))3 ground state despite the coordination of (t)BuNC.  相似文献   

7.
8.
The spectroscopic properties, electronic structure, and reactivity of the low-spin Fe(III)-alkylperoxo model complex [Fe(TPA)(OH(x))(OO(t)Bu)](x+) (1; TPA = tris(2-pyridylmethyl)amine, (t)Bu = tert-butyl, x = 1 or 2) are explored. The vibrational spectra of 1 show three peaks that are assigned to the O-O stretch (796 cm(-1)), the Fe-O stretch (696 cm(-)(1)), and a combined O-C-C/C-C-C bending mode (490 cm(-1)) that is mixed with upsilon(FeO). The corresponding force constants have been determined to be 2.92 mdyn/A for the O-O bond which is small and 3.53 mdyn/A for the Fe-O bond which is large. Complex 1 is characterized by a broad absorption band around 600 nm that is assigned to a charge-transfer (CT) transition from the alkylperoxo pi*(upsilon) to a t(2g) d orbital of Fe(III). This metal-ligand pi bond is probed by MCD and resonance Raman spectroscopies which show that the CT state is mixed with a ligand field state (t(2g) --> e(g)) by configuration interaction. This gives rise to two intense transitions under the broad 600 nm envelope with CT character which are manifested by a pseudo-A term in the MCD spectrum and by the shapes of the resonance Raman profiles of the 796, 696, and 490 cm(-1) vibrations. Additional contributions to the Fe-O bond arise from sigma interactions between mainly O-O bonding donor orbitals of the alkylperoxo ligand and an e(g) d orbital of Fe(III), which explains the observed O-O and Fe-O force constants. The observed homolytic cleavage of the O-O bond of 1 is explored with experimentally calibrated density functional (DFT) calculations. The O-O bond homolysis is found to be endothermic by only 15 to 20 kcal/mol due to the fact that the Fe(IV)=O species formed is highly stabilized (for spin states S = 1 and 2) by two strong pi and a strong sigma bond between Fe(IV) and the oxo ligand. This low endothermicity is compensated by the entropy gain upon splitting the O-O bond. In comparison, Cu(II)-alkylperoxo complexes studied before [Chen, P.; Fujisawa, K.; Solomon, E. I. J. Am. Chem. Soc. 2000, 122, 10177] are much less suited for O-O bond homolysis, because the resulting Cu(III)=O species is less stable. This difference in metal-oxo intermediate stability enables the O-O homolysis in the case of iron but directs the copper complex toward alternative reaction channels.  相似文献   

9.
Introduction of a single meso substituent into ClFe(III)(OEP) or K[(NC)(2)Fe(OEP)] results in significant changes in the geometric and/or spectroscopic properties of these complexes. The mono-meso-substituted iron(III) complexes ClFe(III)(meso-Ph-OEP), ClFe(III)(meso-n-Bu-OEP), ClFe(III)(meso-MeO-OEP), ClFe(III)(meso-Cl-OEP), ClFe(III)(meso-NC-OEP), ClFe(III)(meso-HC(O)-OEP), and ClFe(III)(meso-O(2)N-OEP) have been isolated and characterized by their UV/vis and paramagnetically shifted (1)H NMR spectra. The structures of both ClFe(III)(meso-Ph-OEP) and ClFe(III)(meso-NC-OEP) have been determined by X-ray crystallography. Both molecules have five-coordinate structures typical for high-spin (S = 5/2) iron(III) complexes. However, the porphyrins themselves no longer have the domed shape seen in ClFe(III)(OEP), and the N(4) coordination environment possesses a slight rectangular distortion. These high-spin, mono-meso-substituted iron(III) complexes display (1)H NMR spectra in chloroform-d solution which indicate that the conformational changes seen in the solid-state structures are altered by normal molecular motion to produce spectra consistent with C(s) molecular symmetry. In pyridine solution the high-spin six-coordinate complexes [(py)ClFe(III)(meso-R-OEP)] form. In methanol solution in the presence of excess potassium cyanide, the low-spin six-coordinate complexes K[(NC)(2)Fe(III)(meso-R-OEP)] form. The (1)H NMR spectra of these show that electron-donating substituents produce an upfield relocation of the meso-proton chemical shifts. This relocation is interpreted in terms of increased contribution from the less common (d(xz),d(yz))(4)(d(xy))(1) ground electronic state as the meso substituent becomes more electron donating.  相似文献   

10.
1H NMR studies of mixed-ligand iron (III) dithiocarbamates have been carried out using the following ligands: N,N-diethyldithiocarbamate, morpholinyl-N-, and piperidyl-N-carbodithioate. The ligand exchange equilibria gave all species of the general formula Fe(dtc)n(dtc′)3?n, where n = 0-3 with nearly random statistical distribution of Fe(Et2dtc)n(morphdtc)3?n complexes. Magnetic moments of the mixed-ligand complexes have been determined. Both the magnetic moment and isotropic shift temperature dependences confirmed the cross-over properties of these mixed-ligand complexes.  相似文献   

11.
The parameters of13C NMR spectra of linear and cyclic alkenylalanes synthesized from mono- and disubstituted acetylene and the simplest alkylalanes have been obtained. A strong paramagnetic effect of the aluminum atom on shielding of α- and β-carbon atoms at the double bond has been observed for the dimeric form of organoaluminum compounds (OAC) in inert solvents, unlike that for the monomeric form solvated in electron-donor solvents (Et2O, THF, and Et3N). The results were interpreted in terms of the model of the electron density redistribution on going from the dimeric structure of OAC to the monomeric one. The PM3 method describes most adequately (as compared to MNDO and AM1) the equilibrium geometry of cyclic dimers of OAC.  相似文献   

12.
Weber B  Walker FA 《Inorganic chemistry》2007,46(16):6794-6803
The 1H NMR spectra of a series of mono- and dinuclear pyridine complexes [FeL1(R1/R2)(py)2] and [Fe2L2(R1/R2)(py)4] have been investigated in a mixed toluene-d8/pyridine-d5 solution. The equatorial tetradentade Schiff base like ligands L1(R1/R2) and L2(R1/R2) with a N2O22- coordination sphere for each metal center have been obtained by condensation of a substituted malonodialdehyde (R1/R2 are Me/COOEt, Me/COMe, or OEt/COOEt) with o-phenylenediamine (L1(R1/R2)) or 1,2,4,5-tetraaminobenzene (L2(R1/R2)). The 1H NMR resonances were assigned by comparison of differently substituted complexes in combination with a line-width comparison. The 1H NMR shifts from 188 to 358 K show a strong influence of the spin state of the iron center. The behavior of the pure high-spin iron(II) complexes is close to ideal Curie behavior. Analysis of the resonance shifts of the spin-transition complexes can be used for determining the high-spin mole fraction of the complex in solution at different temperatures. Magnetic susceptibility measurements in solution using the Evans method were made for all six complexes. Significant differences between the spin-transition behavior of the complexes in solution of those in the solid state were found. However, the plots of microeff as a function of temperature obtained using the Evans method and those obtained by interpretation of the NMR shifts were virtually identical. The isotropic shifts of protons in the complexes proved to be suitable tools for following a spin transition in solution. Comparison of the microeff plots of the mono- and dinuclear complexes in solution reveals slight differences between the steepness of the curves that may be attributable to cooperative interactions between the metal centers in the case of the dinuclear complexes.  相似文献   

13.
Conclusions The13C NMR spectroscopy data obtained for the iron tricarbonyl complexes of the benzolonium ions are in agreement with the postulate that the iron tricarbonyl fragment takes an effective part in a delocalization of the positive charge.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 705–707, March, 1973.  相似文献   

14.
The NMR and EPR spectra of a series of pyridine complexes [(OEC)Fe(L)2]+ (L = 4-Me2NPy, Py, and 4-CNPy) have been investigated. The EPR spectra at 4.2 K suggest that, with a decrease of the donor strength of the axial ligands, the complexes change their ground state from (d(xy))2 (d(xz)d(yz))3 to (d(xz)d(yz))4 (d(xy))1. The NMR data from 303 to 183 K show that at any temperature within this range the chemical shifts of pyrrole-8,17-CH2 protons increase with a decrease in the donor strength of the axial ligands. The full peak assignments of the [(OEC)Fe(L)2]+ complexes of this study have been made from COSY and NOE difference experiments. The pyrrole-8,17-CH2 and pyrroline protons show large chemical shifts (hence indicating large pi spin density on the adjacent carbons which are part of the pi system), while pyrrole-12,13-CH2 and -7,18-CH2 protons show much smaller chemical shifts, as predicted by the spin densities obtained from molecular orbital calculations, both Hückel and DFT; the DFT calculations additionally show close energy spacing of the highest five filled orbitals (of the Fe(II) complex) and strong mixing of metal and chlorin character in these orbitals that is sensitive to the donor strength of the axial substituents. The pattern of chemical shifts of the pyrrole-CH2 protons of [(OEC)Fe(t-BuNC)2]+ looks somewhat like that of [(OEC)Fe(4-Me2NPy)2]+, while the chemical shifts of the meso-protons are qualitatively similar to those of [(OEP)Fe(t-BuNC)2]+. The temperature dependence of the chemical shifts of [(OEC)Fe(t-BuNC)2]+ shows that it has a mixed (d(xz)d(yz))4 (d(xy))1 and (d(xy))2 (d(xz),d(yz))3 electron configuration that cannot be resolved by temperature-dependent fitting of the proton chemical shifts, with a S = 5/2 excited state that lies somewhat more than 2kT at room temperature above the ground state; the observed pattern of chemical shifts is the approximate average of those expected for the two S = 1/2 electronic configurations, which involve the a-symmetry SOMO of a planar chlorin ring with the unpaired electron predominantly in the d(yz) orbital and the b-symmetry SOMO of a ruffled chlorin ring with the unpaired electron predominantly in the d(xy) orbital. A rapid interconversion between the two, with calculated vibrational frequency of 22 cm(-1), explains the observed pattern of chemical shifts, while a favoring of the ruffled conformation explains the negative chemical shift (and thus the negative spin density at the alpha-pyrroline ring carbons), of the pyrroline-H of [TPCFe(t-BuNC)2]CF3SO3 (Simonneaux, G.; Kobeissi, M. J. Chem. Soc., Dalton Trans. 2001, 1587-1592). Peak assignments for high-spin (OEC)FeCl have been made by saturation transfer techniques that depend on chemical exchange between this complex and its bis-4-Me2NPy adduct. The contact shifts of the pyrrole-CH2 and meso protons of the high-spin complex depend on both sigma and pi spin delocalization due to contributions from three of the occupied frontier orbitals of the chlorin ring.  相似文献   

15.
The manganese(III)-bis[poly(pyrazolyl)borate] complexes, Mn(pzb)2SbF6, where pzb- = tetrakis(pyrazolyl)borate (pzTp) (1), hydrotris(pyrazolyl)borate (Tp) (2), or hydrotris(3,5-dimethylpyrazolyl)borate (Tp*) (3), have been synthesized by oxidation of the corresponding Mn(pzb)2 compounds with NOSbF6. The Mn(III) complexes are low-spin in solution and the solid state (microeff = 2.9-3.8 microB). X-ray crystallography confirms their uncommon low-spin character. The close conformity of mean Mn-N distances of 1.974(4), 1.984(5), and 1.996(4) A in 1, 2, and 3, respectively, indicates absence of the characteristic Jahn-Teller distortion of a high-spin d4 center. N-Mn-N bite angles of slightly less than 90 degrees within the facially coordinated pzb- ligands produce a small trigonal distortion and effective D3d symmetry in 1 and 2. These angles increase to 90.0(4)degrees in 3, yielding an almost perfectly octahedral disposition of N donors in Mn(Tp*)2+. Examination of structural data from 23 metal-bis(pzb) complexes reveals systematic changes within the metal-(pyrazolyl)borate framework as the ligand is changed from pzTp to Tp to Tp*. These deformations consist of significant increases in M-N-N, N-B-N, and N-N-B angles and a minimal increase in Mn-N distance as a consequence of the steric demands of the 3-methyl groups. Less effective overlap of pyrazole lone pairs with metal atom orbitals resulting from the M-N-N angular displacement is suggested to contribute to the lower ligand field strength of Tp* complexes. Mn(pzb)2+ complexes undergo electrochemical reduction and oxidation in CH3CN. The electrochemical rate constant (ks,h) for reduction of t2g4 Mn(pzb)2+ to t2g3eg2 Mn(pzb)2 (a coupled electron-transfer and spin-crossover reaction) is 1-2 orders of magnitude smaller than that for oxidation of t2g4 Mn(pzb)2+ to t2g3 Mn(pzb)22+. ks,h values decrease as Tp* > pzTp > Tp for the Mn(pzb)2+/0 electrode reactions, which contrasts with the behavior of the comparable Fe(pzb)2+/0 and Co(pzb)2+/0 couples.  相似文献   

16.
Infrared spectra of new iron(III) complexes with urea derivatives: [Fe (CH3HNCONH2)6]X3; [Fe(C2H5HNCONH2)6]X3 and [Fe(CH3-HNCONHCH3)6]X3 (where X = Cl?, NO?3 or 12SO2?4) have been recorded and their interpretation given. The analysis of the infrared spectra was based on a comparison of the positions of bands corresponding to the vibrations of characteristic groups appearing in the complexes and the free ligands. Comparison and analysis of the data show that the urea derivatives coordinate with mono- and disubstituted iron(III) through the oxygen atom of the carbonyl group.  相似文献   

17.
13C and 1H isotropic shifts have been measured for a series of Fe(III) tris-dithiocarbamate complexes. The 13C isotropic shifts may be interpreted as arising solely from contact hyperfine coupling and demonstrate that as the low-spin state of the metal is favoured there is an increase in metal-ligand π-bonding. σ-delocalization of unpaired spin density is more important in determining the 13C isotropic shifts than those of the contiguous proton.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号