共查询到20条相似文献,搜索用时 15 毫秒
1.
Separation of conjugated linoleic acid methyl esters by silver-ion high performance liquid chromatography in semi-preparative mode 总被引:3,自引:0,他引:3
Adlof RO 《Journal of chromatography. A》2004,1033(2):369-371
Silver-ion HPLC (Ag-HPLC) has been utilized to separate a variety of unsaturated fatty acid methyl esters (FAMEs) by configuration, location or number of olefinic or acetylenic bonds. Two analytical Ag-HPLC columns connected in series and an isocratic solvent system of acetonitrile (ACN) in hexane were used to fractionate 10-15 mg samples of a mixture of two deuterium-labeled isomers of conjugated linoleic acid (Z9.E11- and Z9,Z11-octadecadienoic acid-17,17,18,18-d4). "Baseline" (> 95%) resolution of the two isomers, which decreased with increasing weights of sample injected, was maintained by careful adjustment of the percentage of ACN in the ACN/hexane solvent system. Chemical purities of the isolated FAME were > 96%. 相似文献
2.
3.
The solvation parameter model is used to characterize the separation properties of the polar stationary phases EC-Wax and PAG with a poly(ethylene oxide) backbone (substituted with propylene oxide in the case of PAG) and the cyanopropyl-substituted polysilphenylene-siloxane stationary phase BPX90 at five equally spaced temperatures between 60 and 140 degrees C. The separation characteristics of these stationary phases are compared to four PEG and two poly(cyanopropylsiloxane) stationary phases (HP-20M, HP-Innowax, SolGel-Wax, DB-WAXetr, HP-88, and SP-2340) characterized in the same way. The database of system constants for these polar stationary phases is used to provide insight into the separation mechanism for fatty acid methyl esters and to determine selectivity differences that can be expected for generically similar stationary phase types. The discussion is not structured to indicate which stationary phase should be used for a particular separation but to provide a general framework to demonstrate the relationship between the retention mechanism and stationary phase chemistry. 相似文献
4.
Thermal decomposition and stability of fatty acid methyl esters in supercritical methanol 总被引:1,自引:0,他引:1
Hee-Yong ShinSeon-Muk Lim Seong-Youl Bae Sea Cheon Oh 《Journal of Analytical and Applied Pyrolysis》2011,92(2):332-338
In recent years, non-catalytic supercritical processes for biodiesel production have been proposed as alternative environmentally friendly technologies. However, conditions of high temperature and pressure that occur while biodiesel is in supercritical fluid can cause fuel degradation, resulting in low yield. In this study, we performed the thermal decomposition of fatty acid methyl esters (FAMEs) in supercritical methanol at temperatures ranging from 325 °C to 420 °C and pressure of 23 MPa to investigate the degradation characteristics and thermal stability of biodiesel. The primary reactions we observed were isomerization, hydrogenation, and pyrolysis of FAMEs. The main pathway of degradation was deduced by analyzing the contents of degradation products. We found that if FAME has shorter chain length or is more saturated, it has higher thermal stability in supercritical methanol. All FAMEs remained stable at 325 °C or below. Based on these results, we recommend that transesterification reactions in supercritical methanol should be carried out below 325 °C (at 23 MPa) and 20 min, the temperature at which thermal decomposition of FAMEs begins to occur, to optimize high-yield biodiesel production. 相似文献
5.
The retention behavior of components analyzed by chromatography varies with instrumental settings. Being able to predict how changes in these settings alter the elution pattern is useful, both with regards to component identification, as well as with regards to optimization of the chromatographic system. In this work, it is shown how experimental designs can be used for this purpose. Different experimental designs for response surface modeling of the separation of fatty acid methyl esters (FAME) as function of chromatographic conditions in GC have been evaluated. Full factorial, central composite, Doehlert and Box-Behnken designs were applied. A mixture of 38 FAMEs was separated on a polar cyanopropyl substituted polysilphenylene-siloxane phase capillary column. The temperature gradient, the start temperature of the gradient, and the carrier gas velocity were varied in the experiments. The modeled responses, as functions of chromatographic conditions, were retention time, retention indices, peak widths, separation efficiency and resolution between selected peak pairs. The designs that allowed inclusion of quadratic terms among the predictors performed significantly better than factorial design. Box-Behnken design provided the best results for prediction of retention, but the differences between the central composite, Doehlert and Box-Behnken designs were small. Retention indices could be modeled with much better accuracy than retention times. However, because the errors of predicted tR of closely eluting peaks were highly correlated, models of resolution (Rs) that were based on retention time had errors in the same range as corresponding models based on ECL. 相似文献
6.
Quantification of trace fatty acid methyl esters in diesel fuel by using multidimensional gas chromatography with electron and chemical ionization mass spectrometry 下载免费PDF全文
R. L. Webster P. M. Rawson D. J. Evans P. J. Marriott 《Journal of separation science》2016,39(13):2537-2543
Measurement of contamination of marine and naval diesel fuels (arising from product mixing or adulteration) with biodiesel or fatty acid methyl esters can be problematic, especially at very low levels. A suitable solution for this task for trace amounts of individual fatty acid methyl esters with resolution and quantification can be achieved by using a multidimensional gas chromatographic approach with electron and chemical ionization mass spectrometric detection. A unique column set comprising a 100 m methyl‐siloxane nonpolar first dimension column and high‐temperature ionic liquid column in the second dimension enabled identification of individual fatty acid methyl esters at below the lowest concentrations required to be reported in a diesel fuel matrix. Detection limits for individual fatty acid methyl esters compounds ranged from 0.5 to 5.0 mg/L, with excellent linearity up to 5000 mg/L and repeatability of the method from 1.3 to 3.2%. The method was applied to the analysis of diesel fuel samples with suspected biodiesel contamination. Contamination at 568 mg/L was calculated for an unknown sample and interpretation of the results permitted the determination of a likely source of the contamination. 相似文献
7.
High performance liquid chromatography of saturated, monounsaturated, diunsaturated, triunsaturated, cyclopropenoic (malvalic and sterculic) and cyclopropanoic (cis-8,9-methylenehexadecanoic and dihydrosterculic) fatty acids was performed with their methyl esters. All separations were carried out with two types of reversed phase columns, the eluent consisting of an acetonitrile/water mixture. The effect of water was studied in the range 0–15%. The best separation was obtained with acetonitrile/water (85:15 v/v). Quantitative results indicated that the detection limits depended upon ultraviolet wavelength and in the present study were 4 ng of methyl sterculate and 125 ng of methyl dihydrosterculate at 195 nm. 相似文献
8.
Summary Polyunsaturated fatty acids have been analysed as methyl esters by liquid chromatography on porous graphitic carbon and the
results compared with those obtained on octadecyl bonded phases. Chromatographic behaviour on octadecyl bonded phases arises
principally as a result of hydrophobic interactions with the bonded phase. Because the retention of analytes is greater on
porous graphitic carbon than on octadecyl phases, organic mobile phases are required. When the number of double bonds is low
(ca 1–3), the behaviour of porous graphitic carbon is similar to that of octadecyl bonded phases, but when this number increases
stronger interactions with the flat surface of the graphite appear, resulting in new selectivity. These two ‘reversed-phase’
systems are considered complementary for separation of different fatty acid methyl esters. An additional advantage of porous
graphitic carbon is that it enables isolation of hexadecartrienoic and hexadecadienoic acids, which are not available commercially. 相似文献
9.
T. E. Kuzmenko A. L. Samusenko V. P. Uralets R. V. Golovnya 《Journal of separation science》1979,2(1):43-44
An injection splitter in front of a glass capillary column was used for the hydrogenation of fatty acid methyl esters (FAME) mixtures. Hydrogenation followed by gas chromatographic analysis on capillary columns permitted detection and identification in complicated natural mixtures of branched fatty acids, showing minor structural differences, in quantities down to 10?8g. The technique described, apart from its suitability for FAME analysis, shows promise for structure determination studies of other classes of compounds. 相似文献
10.
Simone Hauff 《Analytica chimica acta》2009,636(2):229-4959
Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was ∼90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were <0.002-0.29% of total lipids from camembert, <0.002-0.12% of total lipids from mozzarella, and <0.002-0.18% of total lipids in a goat cream cheese. Differences in the fatty acid pattern of neutral and polar lipids were detected. The quantity of the fatty acids determined in the phospholipid fraction was divided by the factor 0.7 in order to convert the fatty acid content into the phospholipid content of the cheese samples. This factor is based on the contribution of 16:0 to dipalmitoylphosphatidylcholine (DPPC). The resulting DPPC equivalents (DPPCeq) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese was 0.60%, 1.42% and 0.79%, respectively. 相似文献
11.
A rapid and simple method for the isolation of fatty acid methyl esters and fatty alcohols from the lipid fraction of marine zooplankton is described. Wax esters are the dominant lipid class in most calanoid copepods and trans-esterification results in a high fatty alcohol content in the analytical extract. Current procedures for the separation and purification of lipid classes by preparative thin-layer chromatography are time-consuming and are subject to low recovery of the analytes. In this method, fatty acid methyl esters and fatty alcohols were separated by liquid chromatography using silica or honded amino-silica as the stationary phase. The procedure is equally applicable to the analysis of zooplankton with low wax ester (and hence fatty alcohol) content, for example, a number of species of euphausiid and, generally, for samples of low mass. 相似文献
12.
To enhance the UV detectability of hydroxy fatty acids, p-nitrobenzyl (PNB) esters of twenty-two different monohydroxy fatty acids of various chain-lengths (C16-C22) and differing positional isomers were formed using O-(p-nitrobenzyl)-N,N-(diisopropyl)-isourea (PNBDI) as alkylating agent. Reversed-phase and adsorption high-performance liquid chromatography (HPLC) of the twenty-two monohydroxy fatty acid PNB esters were studied. The PNB group did not dominate the chromatographic properties of monohydroxy fatty acids and it did not interfere with the HPLC separation of positional isomers. PNBDI was, however, found to be less than ideal for formation of PNB derivatives of monohydroxy fatty acids because UV absorbing contaminants of PNBDI interfered with the HPLC analyses. 相似文献
13.
The determination of fatty acid methyl esters (FAME) in diesel fuel blends is an important aspect of production and blending process as well as quality control of distribution operations. In this study, energy-dispersive X-ray fluorescence spectrometer (EDXRF) is used for the first time for determination of FAME in biodiesel blends. The principle of the method is based on intensity difference of X-ray radiation scattered from hydrocarbons and from FAME. The experiment shows that coherent and incoherent radiation, commonly applied for evaluation of the average atomic number of the sample with light matrix, cannot be applied for FAME determination. However, the application of scattered continuous radiation gives excellent correlation between FAME concentration and intensity of scattered radiation. The best results are obtained if continuum is collected in the range of energy between 10.5 and 15.0 keV for rhodium X-ray tube, operated at 35 kV. Linear relationship between the FAME concentration and the inverse of scattered continuous radiation is obtained with the correlation coefficients of 0.999. Standard deviation of measurement is ca. 0.46% (v/v) of FAME and detection limit is 1.2% (v/v) for 600 s counting time and 50% dead-time loss using Si-PIN detector. The investigation shows that crucial issue in determination of FAME in biodiesel blends using EDXRF spectrometer is the precision of measurements resulting from the counting statistics. Therefore, much better results (0.20% (v/v) standard deviation and 0.52% (v/v) detection limit) can be expected if higher intensity of primary radiation is applied and X-ray spectrum is collected by silicon drift detector of high input count rate. For concentration of FAME from 10 to 100% (v/v), the differences between reference method (Fourier transform infrared spectrometry) and the proposed method usually do not exceed 1% (v/v) of FAME. The proposed method is fast, simple and enables FAME determination in wide range of concentration up to 100% of FAME without any sample treatment. 相似文献
14.
Fatty acid methyl esters from various fats and oils were separated by comprehensive two-dimensional supercritical fluid chromatography with conventional packed columns and FID detection. The first dimension was a silica gel column and the second dimension was an ODS column. This combination was largely orthogonal for the separation of fatty acid methyl esters. The first dimension separations were primarily based on the number of double bonds while the second dimension separations were based on the chain length. The highly-ordered chromatograms and improved resolution allowed the easy detection and identification of minor components. Although the first dimension separations were performed under isobaric conditions where the peak width increased in proportion to the retention, the programming of the sampling duration allowed us to maintain the optimum re-injection frequency (3–4 times) per peak into the second dimension and so to minimize the total analysis time without deteriorating the resolution. 相似文献
15.
16.
《Journal of separation science》2018,41(7):1582-1592
The chromatographic efficiency that could be achieved in temperature‐programmed gas chromatography was compared for four capillary columns that are typically applied for analysis of fatty acid methyl esters (FAME). Three different carrier gases, hydrogen, helium and nitrogen, were applied. For each experiment, the carrier gas velocities and the temperature rates were varied with a full 9 × 3 design, with nine levels on the carrier gas velocity and temperature rates of 1, 2 or 3°C/min. Response surface methodology was used to create models of chromatographic efficiency as a function of temperature rate and carrier gas velocity. The chromatographic efficiency was defined as the inverse of peak widths measured in retention index units. The final results were standardized so that the efficiencies that could be achieved within a certain time frame, defined by the retention time of the last compound in the chromatogram, could be compared. The results show that there were clear differences in the efficiencies that could be achieved with the different columns and that the efficiency decreased with increasing polarity of the stationary phase. The differences can be explained by higher resistance to mass transfer in the stationary phase in the most polar columns. 相似文献
17.
A comparative study is reported on separation of series of mono-, di-, and trisubstituted methyl 5β-cholanates, which differ only in the position and stereochemistry of hydroxyl or keto groups at position and stereochemistry of hydroxyl or keto groups at positions C-3, C-7, and/or C-12, by reversed-phase [with chemically-bonded (C-18) silica gel] and normal-phase (silica gel) high-performance thin-layer chromatography (HPTLC). Methnol (or acetonitrile)/water systems were employed as mobile phase. Reversed-phase HPTLC found to be particulary effective for separation of the stereoisomers of di- and trisubstituted compounds whereas the less polar monosubstituted isomers are well resolved in normal-phase HPTLC. 相似文献
18.
Employing isocratic and gradient-elution high-performance liquid chromatography (HPLC) a number of straight-chain fatty acid esters (decanoate, laurate, myristate, palmitate) of violaxanthin, auroxanthin, lutein, zeaxanthin, isozeaxanthin, and beta-cryptoxanthin, prepared by partial synthesis, have been separated on a C18 reversed-phase column. Several chromatographic conditions were developed that separated a mixture of di-fatty acid esters (dimyristate, myristate palmitate mixed ester, dipalmitate) of violaxanthin, auroxanthin, lutein, and zeaxanthin in a single chromatographic run. Hydroxycarotenoids such as lutein, zeaxanthin, and isozeaxanthin that are not easily separated by HPLC on C18 reversed-phase columns, can be readily separated after derivatization with fatty acids and chromatography of their esters. Chromatographic conditions for optimum separation of carotenoids from various classes are discussed. 相似文献
19.
20.
SHEN Yu-Feng WANG Qing-Hai ZHU Dao-Qian ZHOU Liang-Mo Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning China 《中国化学》1994,12(2):129-137
The study on retention behavior in supercritical fluid chromatography (SFC) is necessary to understand the mechanism of the various interactions in SFC. The retention of SFC in carboxylic acid methyl ester/polymethylsiloxane/CO2 system was studied systematically and the retention behavior of this kind of compounds under various typical operation conditions was described using the method of an alternative unified theory of chromatographic retention. The results illustrated that expression: Ink.= a + b/T + cp + dp/T + ep2/T can be used to describe quantitatively the retention behavior of carboxylic acid methyl ester/polymethylsiloxane/CO2 system in the ranges of reduced density from 0.549 to 1.411. It was also found that the entropy of solute in stationary phase is dependent on the density of supercritical fluid (SF) under typical operating conditions of SFC. 相似文献