首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 Poly(styrene-co-methacrylic acid) [P(St-co-MAA)] microspheres were prepared by emulsifier-free emulsion copolymerization of St with MAA. Fourier transform IR spectroscopy and elemental analysis were used to study the change in the content of MAA in the microspheres. The results of X-ray photoelectron spectroscopy measurements indicated the presence of carboxylic functionality on the surface of the microspheres. The P(St-co-MAA) metal composite particles were prepared by chemical metal deposition. Transmission electron microscopy observation and X-ray diffraction measurement were used to study the distribution and structure of the metal particles deposited. Received: 15 September 1999 Accepted: 24 December 1999  相似文献   

2.
Studies on batch emulsion copolymeization of styrene with acrylic acid (AA) or methacrylic acid (MAA) were carried out. The effect of AA or MAA on the total conversion of the monomers was studied by a gravimetric method. The distribution of the carboxylic group in the copolymer microspheres was investigated by X-ray photoelectron spectroscopy and elemental analysis. The surface content of the carboxylic groups of styrene (St)/AA copolymer microspheres was found to be higher than that of St/MAA copolymer microspheres. The effects of partial neutralization of MAA in emulsifier-free emulsion copolymerization and seeded emulsion copolymerization on the distribution of the carboxylic group was also investigated. Received: 14 December 1999/Accepted: 23 August 2000  相似文献   

3.
 Poly(styrene-co-acrylic acid) (St/AA) copolymer microspheres were prepared by batch emulsifier-free emulsion copolymerization of St with AA. The monomer conversion, the morphology and the composition of the particles along the polymerization process were monitored by a gravimetric method, transmission electron microscopy observation and Fourier transform IR analysis, respectively. A shift of the polymerization locus from inside the particles to “outside” the particles in the postnucleation stage was proposed. The results of the study of the distribution of carboxyl groups by a combination of elemental and X-ray photoelectron spectroscopy analyses implied a core/shell structure for the St/AA copolymer microspheres. By chemical metal deposition, nickel particles were formed and deposited on the surface of St/AA microspheres, forming polymer/metal composite particles. Received: 16 February 2001 Accepted: 8 August 2001  相似文献   

4.
 Monodispersed poly(styrene-co-acrylonitrile) [P(St-co-AN)] microspheres were prepared by emulsifier-free emulsion copolymerization of St with AN. Fourier transform IR spectroscopy and elemental analysis were used to measure the content of AN in the poly(St-co-AN) microspheres. X-ray photoelectron spectroscopy (XPS) measurements indicated the presence of an AN unit on the surface of the microspheres. The combined results of the elemental analysis and the XPS measurements showed that the copolymer on the surface of the P(St-co-AN) particles was rich in AN compared with that in the interior of the particles. P(St-co-AN)–metal composite particles were prepared by chemical metal deposition. The addition of nickel could improve the distribution of cobalt on surface of the polymer microspheres. The preparation of polymer–bimetal composite particles was tried. Transmission electron microscopy and XRD were used to study the distribution and structure of the deposited metal particles. Received: 30 June 1999/Accepted in revised form: 16 September 1999  相似文献   

5.
Human serum albumin magnetic microspheres containing 30% iron oxide particles were synthesized by a heat-stabilization process. The average diameter, the size distribution and the morphology were characterized by scanning electron microscopy, atomic force microscopy and transmission electron microscopy. The distribution of the iron oxide nanoparticles within the microspheres was confirmed by the contrast obtained in the morphology by backscattered electron imaging in scanning electron microscopy. Energy-dispersive X-ray spectroscopy showed the presence of iron in the microspheres. The cabbage like surface structure in some of the microspheres obtained in scanning electron microscopy can be better understood by atomic force microscopy. This peculiar surface structure in the microsphere may be due to the cross-linking in the protein molecule by heat. The amount of iron oxide in the microsphere was analyzed by atomic absorption spectroscopy. The magnetic properties of the particles were measured in a superconducting quantum interference device magnetometer. Received: 12 September 2000 Accepted: 5 February 2001  相似文献   

6.
Silica/polypyrrole (PPY) core/shell microspheres and PPY hollow microspheres were prepared by the template of silica particles whose surface character was modified with different modified agents. The morphology and structure of the particles were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Elemental analysis and X-ray photoelectron spectroscopy (XPS) were carried out to characterize the structure of PPY hollow microspheres. We investigated the effect of different modified agents on the surface character of silica particles and the effect of surface character of silica particles on the morphology of PPY hollow microspheres. The effect of reaction conditions on the size of core/shell particles and hollow particles was also studied.  相似文献   

7.
In this study, an original approach was explored to decorate copper particles with palladium and well-defined bimetallic copper/palladium powders were elaborated through a two-step ball milling procedure. First, copper powder was milled with previously determined optimal conditions (ball-to-powder mass ratio of 2, milling duration of 6 h under argon) in order to obtain spherical nanocrystalline copper particles with an average diameter of 800 μm. Then, an additional milling in presence of 1 at.% of palladium powder was performed, leading to the formation of Cu–Pd composite materials. Palladium surface concentrations from 3 to 62 at.% were obtained by varying both the ball-to-powder mass ratio (2:1 or 10:1) and the milling duration (from 5 to 30 min). Scanning electron microscopy, optical microscopy, X-ray photoelectron spectroscopy and X-ray diffraction analyses confirmed that the more intense the milling is, the easier the palladium diffuses into the copper matrix and smaller the palladium concentration on copper particles is. Cyclic voltammetry and electrolysis experiments showed that palladium inclusions on copper improve greatly the electrocatalytic activity for nitrate reduction in alkaline media. The key role of Pd in the Pd–Cu composite electrodes is to accelerate the reduction of nitrite, formed by the electrochemical reduction of nitrate on Cu sites. Also different nitrate electroreduction behaviors were observed at copper and copper–palladium electrodes leading to the preferential formation of nitrite or ammonia depending on the applied potential and the Pd surface concentration.  相似文献   

8.
A polypyrrole/palladium composite film was prepared on a glassy carbon electrode by the electrochemical deposition method. The palladium particles were uniformly dispersed on a polypyrrole film that was previously electrodeposited on a glassy carbon electrode. By controlling the polymerization process of pyrrole, a highly porous polypyrrole film was obtained; this kind of structure provided more surface areas for depositing palladium particles. The sizes of Pd particles deposited on the porous polypyrrole film are about 15-30 nm. The X-ray photoelectron spectroscopy results showed there was strong interaction between polypyrrole film and palladium particles. This modified electrode showed excellent current efficiency (49.5%) for electrochemical hydrogenation of 4-chlorophenol and the phenol was the sole product. The potential effect on the dechlorination process was also investigated.  相似文献   

9.
The application of X-ray photoelectron spectroscopy (XPS) for studies of surface layers of objects with spherical shape was investigated using as examples polystyrene and poly(styrene–acrolein) microspheres with attached human serum albumin (HSA). The amounts of immobilized protein were determined by the standard biochemical Lowry method and by XPS, using the intensity of the N1s signals of HSA as a basis for evaluation. The XPS data were treated by taking into account the spherical shape of the particles analyzed (variable take-off angle of ejected electrons). The best agreement between the results of the biochemical and XPS determinations was found assuming that for the average particle the takeoff angle varies from 0° to 72.7°. This reflects the fact that in the multilayer arrangement of particles, placed onto the support of the XPS apparatus, the particles from the upper layer partially screen the edges of the particles in the layer below. Received: 23 November 1999 Accepted: 16 March 2000  相似文献   

10.
阎青  白耀文  孟哲  杨万泰 《高分子学报》2007,(11):1102-1104
在沉淀聚合中利用含无毒的乙酸溶剂合成出窄分散交联聚二乙烯基苯(PDVB-55)微球,用扫描电镜(SEM)对其表面形态和粒度进行了表征,结果显示PDVB-55微球均匀且互相分离,平均粒径是2.69μm.X射线光电能谱(XPS)分析表面化学组成显示,微球表面有大量残余双键.  相似文献   

11.
Developing orthogonal surface chemistry techniques that perform at the nanoscale is key to achieving precise control over molecular patterning on surfaces. We report the formation and selective functionalization of alumina nanoparticle arrays generated from block copolymer templates. This new material provides an alternative to gold for orthogonal surface chemistry at the nanometer scale. Atomic force microscopy and X-ray photoelectron spectroscopy confirm these particles show excellent selectivity over silica for phosphonic and carboxylic acid adsorption. As this is the first reported synthesis of alumina nanoparticles from block copolymer templates, characterizations via Fourier transform infrared spectroscopy, Auger electron spectroscopy, and transmission electron microscopy are presented. Reproducible formation of alumina nanoparticles was dependent on a counterintuitive synthetic step wherein a small amount of water is added to an anhydrous toluene solution of block copolymer and aluminum chloride. The oxidation environment of the aluminum in these particles, as measured by Auger electron spectroscopy, is similar to that of native aluminum oxide and alumina grown by atomic layer deposition. This discovery expands the library of available surface chemistries for nanoscale molecular patterning.  相似文献   

12.
The surface properties of PE with bilayer and multilayer coatings based on polyelectrolyte complexes of the biospecific modified N-vinylpyrrolidone-maleic acid copolymer with chitosan, amphiphilic chitosan, or albumin have been investigated by atomic force microscopy, multiple attenuated total reflection spectroscopy, X-ray photoelectron spectroscopy, and goniometry. The copolymer of N-vinylpyrrolidone and maleic acid contains affine ligands to plasminogen—fragments of α-amino-bonded lysine—and imparts thromboresistant properties to the surface being modified. The surface morphology and the size of particles of deposited intermediate layers of chitosan or albumin differ from those of the bilayer (multilayer) coatings containing an additional external layer of the biospecific copolymer. The deposition of the multilayer polymeric coatings promotes a more thorough coverage of the protected surface. Characteristic absorption bands that demonstrate the presence of the modifying polymers on the PE surface have been revealed; this fact is also confirmed by the X-ray photoelectron spectroscopy data on the atomic composition of the analyzed surface. A significant increase in the hydrophilicity of the modified surface is established by the contact angle technique.  相似文献   

13.
The ZnS particles were immobilized on the surface of poly(vinylidene difluoride) (PVDF) mixing methacrylic acid (MAA)-trifluoroethyl acrylate (TFA) copolymer electrospun nanofibers. The PVDF and MAATFA copolymer nanofibers were prepared by electrospinning. Zinc ions were introduced onto the surface of nanofibers by coordinating with the carboxyls of MAA, and then sulfide ions were added to react with zinc ions to form ZnS particles under hydrothermal condition. The size and the amount of ZnS particles increased with the reaction time prolonging. The Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) results reveal that a chemical interaction exists between ZnS and fluoropolymer fibers. The degradation rate of methylene blue in ZnS-fluoropolymer nanocomposite system was considerably higher than in that of ZnS powders system under UV irradiation. There may be an adsorption-migration-photodegradation process during the degradation of methylene blue by using ZnS-fluoropolymer nanocomposites as photocatalyst. The photocatalytic activity of ZnS-fluoropolymer nanocomposites changes indistinctively after 10 times repeating tests.  相似文献   

14.
Pd nanoparticles were synthesized by reduction of palladium acetate by ethanol in systems containing tetrahydrofuran (THF) as dispersion medium and tetradodecylammonium bromide (TDABr) surfactant as stabilizer. The polar phase (ethanol) acts at the same time as reducing agent. THF/TDABr/H2O inverse microemulsions containing micelles of various sizes were also prepared, and the structure of complex liquids was studied by density measurements. Sols containing nanosize Pd0 particles were synthesized within the water droplets of this micellar system. The stabilized Pd0/surfactant system was characterized by density measurements, absorption spectroscopy, and transmission electron microscopy. The stabilizing surfactant layer adsorbed on the liquid/liquid interface and on the surface of the nanoparticles (i.e., the liquid/solid interface) significantly reduced the excess volume for the palladium nanodispersion in organic solvent. Received: 17 July 2000 Accepted: 5 October 2000  相似文献   

15.
Monodispersed palladium nanoparticles protected with n-octyl isocyanide were prepared, and their hydrogen absorption behavior was evaluated. The formation of the nanoparticles has been confirmed by means of 1H NMR and elemental analysis. Fourier transform infrared (FT-IR) showed that three distinct bands (2156, 1964, and 1611 cm(-1)) assigned to mono-, double-, and triple-bridged isocyanide ligands on the palladium surface. The average diameter of the particles was estimated to be 2.1 +/- 0.7 nm from observation by transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) analysis revealed that the particles contained Pd(0) with little amounts of Pd(II) or Pd(IV), in sharp contrast to the thiol- or phosphine-stabilized palladium nanoparticles. The absorption and desorption of hydrogen were reversible, and the reactions were much faster for the nanoparticles than for the bulk palladium metal, whereas the storage capacity was almost the same, 0.6 wt %.  相似文献   

16.
Microwave synthesis of core-shell gold/palladium bimetallic nanoparticles   总被引:2,自引:0,他引:2  
The microwave-assisted polyol reduction method was applied to the synthesis of core-shell gold/palladium bimetallic nanoparticles by the simultaneous reduction of the AuIII and PdII ions. The thickness of the palladium shell was calculated to be approximately 3 nm, and the gold core diameter is 9 nm. The structure and composition of the bimetallic particles were characterized by high-resolution transmission electron microscopy equipped with a nanoarea energy-dispersive X-ray spectroscopy attachment, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy.  相似文献   

17.
杨新林 《高分子科学》2010,28(5):807-817
 Hollow poly(divinylbenzene-co-methacrylic acid) (P(DVB-co-MAA)) microspheres were prepared by the selective dissolution of the non-crosslinked poly(methacrylic acid) (PMAA) mid-layer in ethanol from the corresponding silica/PMAA/P(DVB-co-MAA) tri-layer hybrid microspheres, which were afforded by a three-stage reaction. Silica/PMAA core-shell hybrid microspheres were prepared by the second-stage distillation polymerization of methacrylic acid (MAA) via the capture of the oligomers and monomers with the aid of the vinyl groups on the surface of 3-(methacryloxy)propyl trimethoxysilane (MPS)-modified silica core, which was prepared by the Stöber hydrolysis as the first stage reaction. The tri-layer hybrid microspheres were synthesized by the third-stage distillation precipitation copolymerization of functional MAA monomer and divinylbenzene (DVB) crosslinker in presence of silica/PMAA particles as seeds, in which the efficient hydrogen-bonding interaction between the carboxylic acid groups played as a driving force for the construction of monodisperse hybrid microspheres with tri-layer structure. The morphology and the structure of silica core, silica/PMAA core-shell particles, the tri-layer hybrid microspheres and the corresponding hollow polymer microspheres with movable silica cores were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS).  相似文献   

18.
采用分散聚合两步加料法,在成核期后向反应体系加入光引发转移终止剂(photo-iniferter)单体2-N,N-二乙基二硫代氨基甲酰氧基乙酸β-甲基丙烯酰氧基乙酯(MAEDCA)制备了核-壳单分散光敏性聚苯乙烯(PSt)微球;进一步,在甲醇介质中,利用光敏性微球在紫外光辐照下引发单体丙烯酰胺(AM)进行表面沉淀接枝聚合,制得了表面亲水、树莓状(raspberry-like)PSt/PAM微球.采用SEM及TEM观察了所得微球的结构和形貌,FTIR、UV-Vis、1H-NMR及XPS分析表明微球的photo-iniferter基团含量随MAEDCA加入量增大而提高,同时补加一定量的MAEDCA、St、AIBN、甲醇及水时所得光敏性PS微球单分散性最好;微球表面接枝PAM后变得亲水并可大量吸附Ag纳米粒子.  相似文献   

19.
The amphiphilic poly(methyl methacrylate-block-2-(dimethylamino)ethyl methacrylate) (PMMA-b-PDMAEMA) block copolymer brushes on the surface of clay layers were synthesized by in situ atom transfer radical polymerization. X-ray diffraction results indicate that both exfoliated and intercalated structure can be found in the nanocomposites. The block copolymer brushes can make different nanopatterns on the surface of clay layers after treatment in different solvents. After treatment in tetrahydrofuran block copolymer brushes form lamella structure on the surface, and after treatment in water surface micelles and wormlike structure can be observed. PMMA colloid particles armored by clay nanocomposites were prepared by suspension polymerization. Transmission electron microscopy and scanning electron microscopy were used to characterize the structure and morphology of the colloid particles. Colloid particles with clay layers around the surface can be observed. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface of the colloid particles. N1s binding energy of PDMAEMA blocks on the surface of clay layers was detected by XPS. The two peaks of the N1s binding energy indicate two different nitrogen environments on the surface of clay layers. The peak with a lower binding energy is characteristic of neutral nitrogen on PDMAEMA blocks, and the peak with a higher binding energy is attributed to protonated nitrogen on PDMAEMA blocks.  相似文献   

20.
以甲基丙烯酸缩水甘油酯为单体(GMA)、乙二醇二甲基丙烯酸酯(EDMA)为交联剂,采用原子转移自由基聚合法(ATRP)制备了PGMA-EDMA大孔聚合物微球,采用傅里叶变换红外光谱、扫描电子显微镜及压汞法对PGMA-EDMA微球进行了表征.研究结果表明,原子转移自由基聚合法制备的PGMA-EDMA微球的孔径尺寸及比表面积均大于普通自由基聚合法(CFRP)制备的PGMA-EDMA;ATRP法制备的PGMAEDMA微球的颗粒尺寸(100~400 nm)明显小于CFRP法制备的PGMA-EDMA微球的颗粒尺寸(1000 nm).PGMA-EDMA(ATRP)的微球粒径尺寸分布优于PGMA-EDMA(CFRP).因此PGMA-EDMA(APRP)微球在快速蛋白分离纯化方面有潜在的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号