首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this paper,M-type hexagonal barium ferrite powders are synthesized using the sol-gel method.A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 C using thermo-gravimetric analysis and differential scanning calorimetry.The effects of the additives and the cacinating temperature on the magnetic properties are investigated,and the results show that single-phase barium ferrite powders can be formed.After heat-treating at 950 C for 4h with 3 wt% additive,the coercivity and saturation magnetization are found to be 440 Oe and 57.9 emu/g,respectively.  相似文献   

2.
李颉  张怀武  李元勋  刘颖力  马岩冰 《中国物理 B》2012,21(1):17501-017501
In this paper, M-type hexagonal barium ferrite powders are synthesized using the sol-gel method. A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysis and differential scanning calorimetry. The effects of the additives and the cacinating temperature on the magnetic properties are investigated, and the results show that single-phase barium ferrite powders can be formed. After heat-treating at 950 ℃ for 4h with 3 wt% additive, the coercivity and saturation magnetization are found to be 440 Oe and 57.9 emu/g, respectively.  相似文献   

3.
High-performance submicron-scaled NiCuZn ferrites are prepared by the solid-state reaction method through using CuO as additive. In the synthesis process, a mixture of superfine powder is sintered at 900?C for 3 h, and the obtained product is Ni Zn-ferrite with spinel structure. We observe that the particle size increases with raising the sintering temperature. The NiCuZn ferrite with relatively uniform size and granular shape has the best performance: its coercivity is 14 Oe(1 Oe = 79.5775 A·m-1) and saturation magnetization is 48 emu/g. We also study the effects of particle size, magnetocrystalline anisotropy, and microstructure on coercivity. The method presented here is convenient and economical for producing the high-permeability ferrite powders.  相似文献   

4.
In this study, nanocrystalline Co–Ni–Mg ferrite powders with composition Co_(0.5)Ni_(0.5-x)Mg_xFe_2O_4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co–Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction(XRD) analysis, Fourier transform infrared spectroscopy(FTIR), field emission scanning electron microscopy(FESEM), and vibrating sample magnetometry(VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ~ 32 nm to ~ 36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ~ 57.35 emu/g to~ 61.49 emu/g and ~ 603.26 Oe to~ 684.11 Oe(1 Oe = 79.5775 A·m-1), respectively. The higher values of magnetization Ms and Mr suggest that the optimum composition is Co_(0.5)N_(i0.4)Mg_(0.1)Fe_2O_4 that can be applied to high-density recording media and microwave devices.  相似文献   

5.
郑辉  韩满贵  邓龙江 《中国物理 B》2016,25(2):26201-026201
CoFe_2O_4 ferrite nanowire arrays are fabricated in porous silicon templates. The porous silicon templates are prepared via metal-assisted chemical etching with gold(Au) nanoparticles as the catalyst. Subsequently, CoFe_2O_4 ferrite nanowires are successfully synthesized into porous silicon templates by the sol–gel method. The magnetic hysteresis loop of nanowire array shows an isotropic feature of magnetic properties. The coercivity and squareness ratio(M_r/M_s) of ensemble nanowires are found to be 630 Oe(1 Oe = 79.5775 A·m~(-1) and 0.4 respectively. However, the first-order reversal curve(FORC) is adopted to reveal the probability density function of local magnetostatic properties(i.e., interwire interaction field and coercivity). The FORC diagram shows an obvious distribution feature for interaction field and coercivity. The local coercivity with a value of about 1000 Oe is found to have the highest probability.  相似文献   

6.
The MnZn ferrite coating formed on the surface of iron-based soft magnetic powders via facile and modified sol–gel process has been fabricated to obtain better magnetic performance due to its higher permeability compared with traditional nonmagnetic insulation coatings. The influence of the MnZn ferrite contents on the magnetic performance of the soft magnetic composites(SMCs) has been studied. As the MnZn insulation content increases, the core loss first experiences a decreasing trend that is followed by progressive increase, while the permeability follows an increasing trend and subsequently degrades. The optimized magnetic performance is achieved with 2.0 wt% MnZn ferrite, which results from the decrement of inter-particle eddy current losses based on loss separation. A uniform and compact coating layer composed of MnZn ferrite and oxides with an average thickness of 0.38 ± 0.08 μm is obtained by utilizing ion beam technology, and the interface between the powders and the coating shows satisfied adhesiveness compared with the sample directly prepared by mechanical mixing. The evolution of the coating layers during the calcination process has been presented based on careful analysis of the composition and microstructure.  相似文献   

7.
The effects of annealing rate and morphology of sol–gel derived zinc oxide(ZnO)thin films on the performance of inverted polymer solar cells(IPSCs)are investigated.ZnO films with different morphologies are prepared at different annealing rates and used as the electron transport layers in IPSCs.The undulating morphologies of ZnO films fabricated at annealing rates of 10 C/min and 3 C/min each possess a rougher surface than that of the ZnO film fabricated at a fast annealing rate of 50 C/min.The ZnO films are characterized by atomic force microscopy(AFM),optical transmittance measurements,and simulation.The results indicate that the ZnO film formed at 3 C/min possesses a good-quality contact area with the active layer.Combined with a moderate light-scattering,the resulting device shows a 16%improvement in power conversion efficiency compared with that of the rapidly annealed ZnO film device.  相似文献   

8.
A series of FeCoHfO films were fabricated by dc magnetron reactive sputtering at varying partial pressure of oxygen (Po2) from 0 to 11.7%, and the electrical and magnetic properties of films have been studied. It is shown that optimal Fe43.29 Co19.51Hf7.49 O29.71 films with desired properties can be obtained when the films were prepared under Po2= 5.1%. The films show superior properties of low coereivity, Hc ∽5.5 Oe, relatively high saturation magnetization, 47rMs · 18.3 kG, high anisotropy field Hk ∽ 65 Oe, and high electrical resistivity ρ∽ 2675 μΩ·cm. Permeability spectra shows that the natural ferromagnetic resonant frequency is as high as 3.1 GHz. The combined merits of the film make the films taken as an ideal candidate material for high-frequency applications such as noise suppressor. In addition, the effects of the film thickness and annealing treatment on the magnetic properties are also reported.  相似文献   

9.
马小梅  刘杰  朱生志  史慧刚 《中国物理 B》2016,25(12):126102-126102
M-type Al-doped strontium ferrite powders(Sr Alx Fe_(2n-x) O_(19), n = 5.9) with nominal Al content of x = 0–2.0 are prepared by traditional ceramic technology. The phase identification of the powders, performed using x-ray diffraction,shows the presence of purity hexaferrite structure and absence of any secondary phase. The lattice parameters decrease with increasing x. The average grain size of the powders is about 300 nm–400 nm at Al~(3+)ion content x = 0–2.0. The roomtemperature hysteresis loops of the powders, measured by using vibrating sample magnetometer, show that the specific saturation magnetization(σ_s) value continuously decreases while the coercivity(Hc) value increases with increasing x, and Hc reaches to 9759 Oe(1 Oe = 79.5775 A/m) at x = 2.0. According to the law of approach saturation, Hc value increases with increasing Al~(3+)ion content, which is attributed to the saturation magnetization(Ms) decreasing more rapidly than the magnetic anisotropy constant(K_1) obtained by numerical fitting of the hysteresis loops. The distribution of Al~(3+)ions in the hexaferrite structure of Sr Alx Fe_(2n-x) O_(19) is investigated by using 57 Co Mssbauer spectroscopy. The effect of Al~(3+)doping on static magnetic properties contributes to the improvement of magnetic anisotropy field.  相似文献   

10.
The properties of lithium ferrites are very sensitive to chemical composition, synthesis method, and sintering techniques. Li–Ni–Co ferrites with compositional formula Li_(0.45-0.5x)Ni_(0.1)Co_xFe_(2.45-0.5x)O_4, where 0.00 ≤ x ≤ 0.1 in steps of 0.02 were prepared by chemical sol–gel method and sintered by microwave sintering technique. The x-ray diffraction patterns confirmed the formation of single phase with spinel structure in all the samples. The structural parameter viz.lattice constant, crystallite size, and x-ray density for these samples were studied and compared with those measured from samples of similar composition prepared by the sol–gel method and sintered by conventional sintering technique. Enhancement in the magnetic properties like Curie temperature, hysteresis parameters was observed by employing sol–gel synthesis combined with microwave sintering. The results obtained and mechanisms involved are discussed in the paper.  相似文献   

11.
Nano-spinel ferrites synthesized via chemical co-precipitation method are small in size and have serious agglomeration phenomenon, which makes separation difficult in the subsequent process. Ni0.4Cu0.2Zn0.4Fe2O4 ferrites nanoparticles were synthesized via co-precipitation assisted with ultrasonic irradiation produced by ultrasonic cleaner with 20 kHz frequency using chlorinated salts and KOH as initial materials. The effects of ultrasonic power (0, 40 W, 60 W, 80 W) and reaction temperature on the microstructure and magnetic properties of ferrite nanoparticles were investigated. The structure analyses via XRD revealed the successful formation of pure (NiCuZn)Fe2O4 ferrites nanospinel without any impurity. The crystallites sizes were less than 40 nm and the lattice constant was near 8.39 Å. The TEM showed ferrite particle polygonal. M−H analyses performed the saturation magnetization and coercivity of ferrite nanoparticles obtained at the reaction temperature of 25℃ were higher than at 50℃ with same power. The samples exhibited the highest values of Ms 55.67 emu/g at 25℃ and 47.77 emu/g at 50℃ for 60 W and the lowest values of Hc 71.23 Oe at 25℃ for 40 W and 52.85 Oe at 50℃ for 60 W. The squareness ratio (SQR) were found to be lower than 0.5, which revealed the single magnetic domain nature (NiCuZn)Fe2O4 nanoparticles. All the outcomes show the ultrasonic irradiation has positive effects on improving the microstructure and increasing magnetic properties.  相似文献   

12.
Mn-Zn ferrite powders (Mn0.5Zn0.5Fe2O4) were prepared by the nitrate-citrate auto-combustion method and subsequently annealed in air or argon. The effects of heat treatment temperature on crystalline phases formation, microstructure and magnetic properties of Mn-Zn ferrite were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning electron microscopy and vibrating sample magnetometer. Ferrites decomposed to Fe2O3 and Mn2O3 after annealing above 550 °C in air, and had poor magnetic properties. However, Fe2O3 and Mn2O3 were dissolved after ferrites annealing above 1100 °C. Moreover, the 1200 °C annealed sample showed pure ferrite phase, larger saturation magnetization (Ms=48.15 emu g−1) and lower coercivity (Hc=51 Oe) compared with the auto-combusted ferrite powder (Ms=44.32 emu g−1, Hc=70 Oe). The 600 °C air annealed sample had the largest saturation magnetization (Ms=56.37 emu g−1) and the lowest coercivity (Hc=32 Oe) due to the presence of pure ferrite spinel phase, its microstructure and crystalline size.  相似文献   

13.
Zn1−xNixFe2O4 ferrite nanoparticles were prepared by sol–gel auto-combustion and then annealed at 700 °C for 4 h. The results of differential thermal analysis indicate that the thermal decomposition temperature is about 210 °C and Ni–Zn ferrite nanoparticles could be synthesized in the self-propagating combustion process. The microstructure and magnetic properties were investigated by means of X-ray diffraction, scanning electron microscope, and Vibrating sample magnetometer. It is observed that all the spherical nanoparticles with an average grain size of about 35 nm are of pure spinel cubic structure. The crystal lattice constant declines gradually with increasing x from 0.8435 nm (x=0.20) to 0.8352 nm (x=1.00). Different from the composition of Zn0.5Ni0.5Fe2O4 for the bulk, the maximum Ms is found in the composition of Zn0.3Ni0.7Fe2O4 for nanoparticles. The Hc of samples is much larger than the bulk ferrites and increases with the enlarging x. The results of Zn0.3Ni0.7Fe2O4 annealed at different temperatures indicate that the maximum Ms (83.2 emu/g) appears in the sample annealed at 900 °C. The Hc of Zn0.3Ni0.7Fe2O4 firstly increases slightly as the grain size increases, and presents a maximum value of 115 Oe when the grains grow up to about 30 nm, and then declines rapidly with the grains further growing. The critical diameter (under the critical diameter, the grain is of single domain) of Zn0.3Ni0.7Fe2O4 nanoparticles is found to be about 30 nm.  相似文献   

14.
Ni0.53Cu0.12Zn0.35Fe2O4/SiO2 nanocomposites with different weight percentages of NiCuZn ferrite dispersed in silica matrix were prepared by microwave-hydrothermal method using tetraethylorthosilicate as a precursor of silica, and metal nitrates as precursors of NiCuZn ferrite. The structure and morphology of the composites were studied using X-ray diffraction and scanning electron microscopy. The structural changes in these samples were characterized using Fourier Transform Infrared Spectrometer in the range of 400-1500 cm−1. The bands in the range of 580-880 cm−1 show a slight increase in intensity, which could be ascribed to the enhanced interactions between the NiCuZnFe2O4 clusters and silica matrix. The effects of silica content and sintering temperature on the magnetic properties of Ni0.53Cu0.12Zn0.35Fe2O4/SiO2 nanocomposites have been studied using electron spin resonance and vibrating sample magnetometer.  相似文献   

15.
The low temperature microwave sintered NiCuZn and MgCuZn ferrites with compositions Ni0.35Cu0.05Zn0.60Fe2O4 and Mg0.35Cu0.05Zn0.60Fe2O4 were synthesized by conventional mixed oxide method. NiCuZn and MgCuZn ferrite samples obtained showed better sintered densities at 950 and 900 °C, respectively. The scanning electron micrographs of both the ferrite samples appear to be very much similar. The magnitude of initial permeability of MgCuZn ferrite samples is found to be obviously higher than those of NiCuZn ferrite samples at all sintering temperatures. This is mainly due to the fact that MgCuZn ferrite has smaller magnetocrystalline anisotropy constant and magnetostrictive constant. NiCuZn ferrites have higher saturation magnetization than MgCuZn ferrites, which is due to the higher magnetic moment of NiCuZn ferrites. Our results indicate that the microwave sintering method seems to be a potential technique in the MLCI technology.  相似文献   

16.
NiZn- and NiCuZn-ferrite nanoparticles (50–70 nm) with the chemical formula Ni0.5 Zn0.5Fe2O4 (NiZn) and Ni0.35Cu0.15Zn0.5Fe2O4 (NiCuZn) were synthesized by a combustion synthesis method. The nanocrystallite of these materials was characterized by structural and magnetic methods. Saturation magnetization increases from 83 emu/g (NiZn) to 91 emu/g (NiCuZn). Magnetic permeability and dielectric permittivity were measured on sintered samples (pellets and toroids) in the frequency range of 1 MHz–1.8 GHz. Reflection losses (RL) for both samples were calculated from complex permeability and permittivity. Cu substitution in NiZn-ferrite enhances permeability and RL.In order to explore microwave-absorbing properties in X-band, magnetic nanoparticles were mixed with an epoxy resin to be converted into a microwave-absorbing composite and microwave behaviors of both materials were studied using a microwave vector network analyzer from 7.5 to 13.5 GHz. Cu substitution diminishes absorption intensity in the range 11.5–12.5 GHz.  相似文献   

17.
使用成分分别为MnFe2O4和ZnFe2O4的靶,使用射频溅射交替沉积制备了成分不同的Mn1-xZnxFe2O4薄膜,沉积薄膜所用基片分别为单晶硅Si(100),氧化的单晶硅SiO2/Si(100), ZnFe2O4为衬底的单晶硅ZnFe< 关键词: MnZn铁氧体 纳米晶 软磁性 磁性薄膜  相似文献   

18.
Ni0.6Zn0.4Fe2O4 ferrite nano-particles with a crystallite size of about 20 nm were prepared by the conventional hydrothermal method, followed by annealing in a microwave oven for 7.5-15 min. The microstructure and magnetic properties of the samples were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The microwave annealing process has slight effect on the morphology and size of Ni0.6Zn0.4Fe2O4 ferrite nano-particles. However it reduces the lattice parameter and enhances the densification of the particles, and then greatly increases the saturation magnetization (50-56 emu/g) and coercive force of the samples as compared to the non-annealing condition. The microwave annealing process is an effective way to rapidly synthesize high performance ferrite nano-particle.  相似文献   

19.
Fine powders of NiCuZn ferrite with composition Ni(0.7−x)CuxZn0.3Fe2O4 (where x=0, 0.2, 0.4 and 0.6) were prepared by the citrate precursor method. X-ray diffraction measurements confirm the formation of single-phase cubic spinel structure. The grain size was estimated by SEM micrograph which increases with Cu content. Dielectric constant (?) and loss tangent (tan δ) were measured as a function of frequency. The ? and tan δ show a decreasing trend with increase of frequency for all the samples. The DC resistivity was measured as a function of temperature. The temperature-dependent DC resistivity measurements show that the room-temperature DC resistivity of NiCuZn ferrite with x=0.2 is of the order of 109 Ω cm. The AC conductivity (σAC) was studied as a function of frequency. The hysteresis data indicate that the maximum saturation magnetization of 38.66 emu/g is obtained for the composition with x=0.2.  相似文献   

20.
Free-standing Ni0.23Cu0.11Zn0.66Fe2O4 thick films have been prepared using a modified tape-casting method from a viscous paint. The surface morphology, saturation magnetization (Ms), coercivity (Hc) and complex permeability of the thick films were studied. It is demonstrated that the thick films have relatively larger complex permeability and higher resonance frequency as compared to their bulk material counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号