首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertically aligned, c-axis oriented zinc oxide (ZnO) nanowires were grown on Si substrate by metal organic chemical vapor deposition (MOCVD) technique, where sputtered aluminum nitride (AlN) film was used as an intermediate layer and thermally evaporated barium fluoride (BaF2) film as a sacrificial layer. The aspect ratio and density of the nanowires were also varied using only Si microcavity without any interfacial or sacrificial layer. The UV detectors inside the microcavity have shown the higher on-off current ratio and fast photoresponse characteristics. The photoresponse characteristics were significantly varied with the aspect ratio and the density of nanowires.  相似文献   

2.
J.P. Kar 《Applied Surface Science》2010,256(16):4995-4999
Zinc oxide (ZnO) nanostructures were grown on A-, C- and R-plane sapphires by metal organic chemical vapor deposition (MOCVD) technique. The shape of nanostructures was greatly influenced by the underlying sapphire substrate. Vertical aligned nanowires were observed on A- and C-plane sapphires, whereas the nanopencils were grown on R-plane sapphire. A correlation between the morphological and optical properties of the nanostructures has been established, where the morphological and structural characteristics are responsible for the evolution of optical properties. The nanowires, grown on C-plane sapphires, have shown superior optical properties. Comparatively higher photo-induced wettability transition has also been observed for ZnO nanostructures on R-plane sapphire.  相似文献   

3.
Al and Sb codoped ZnO nanorod ordered array thin films have been deposited on glass substrate with a ZnO seed layer by hydrothermal method at different growth time. The effect of growth time on structure, Raman shift, and photoluminescence (PL) was studied. The thin films at growth time of 5 h consist of nanorods growth vertically oriented with ZnO seed layer, and the nanorods with an average diameter of 27.8 nm and a length of 1.02 μm consist of single crystalline wurtzite ZnO crystal and grow along [0 0 1] direction. Raman scattering analysis demonstrates that the thin films at the growth time of 5 h have great Raman shift of 15 cm−1 to lower wavenumber and have low asymmetrical factor Гa/Гb of 1.17. Room temperature photoluminescence reveals that there is more donor-related PL in films with growth time of 5 h.  相似文献   

4.
ZnO nanorods and nanotubes are successful synthesized on A1N/sapphire substrates by metal-organic chemical vapour deposition (MOGVD). The different morphology and structure properties of ZnO nanorods and nanotubes are found to be affected by the A1N under-layer. The photoluminescence spectra show the optical properties of the ZnO nanorods and nanotubes, in which a blueshift of UV emission is observed and is attributed to the surface effect.[第一段]  相似文献   

5.
Using a mixture of ZnO and Te powders as the source material, ZnO nanoleaves with high yield and uniform morphology are fabricated by thermal evaporation. Each nanoleaf is constructed with a nanowire and a nanodisc on one side of the nanowire near the top. The polygonal nanodisc is in symmetric distribution in relation to the nanowires and has polar planes ±(0001) as surfaces. A local homoepitaxial growth mechanism of ZnO polar nanodiscs induced by Te is proposed. With thin nanodiscs, the ZnO nanoleaves could be used in nanolasers, sensors, and photoelectronic nanodevices. Room-temperature photoluminescence result implies good crystalline quality of the ZnO nanoleaves.  相似文献   

6.
Zinc oxide (ZnO) and aluminium-doped zinc oxide (ZnO:Al) thin films were prepared by RF diode sputtering at varying deposition conditions. The effects of negative bias voltage and RF power on structural and optical properties were investigated. X-ray diffraction measurements (XRD) confirmed that both un-doped and Al-doped ZnO films are polycrystalline and have hexagonal wurtzite structure. The preferential 〈0 0 1〉 orientation and surface roughness evaluated by AFM measurements showed dependence on applied bias voltage and RF power. The sputtered ZnO and ZnO:Al films had high optical transmittance (>90%) in the wavelength range of 400-800 nm, which was not influenced by bias voltage and RF power. ZnO:Al were conductive and highly transparent. Optical band gap of un-doped and Al-doped ZnO thin films depended on negative bias and RF power and in both cases showed tendency to narrowing.  相似文献   

7.
Aligned trumpet-shaped zinc oxide microtube arrays have been successfully prepared on silicon (100) substrates via the chemical vapour deposition method with a mixture of ZnO and active carbon powders as reactants. The results show that two types of trumpet-shaped ZnO microtubes can be obtained. A plausible growth mechanism based on the studies of scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and room-temperature photoluminescence spectroscopy is proposed and discussed. The initial metastable zinc-rich ZnOx embryos play a key role in the formation of trumpet-shaped ZnO microtubes. On the different surfaces of metastable zinc-rich ZnOx (x 〈 1), embryos exhibit different stabilities and resistivities to oxidation; these tiny embryos are gradually extended with different growing rates along the directions of its long axis and circular boundary around its oxide shell. Just this special reason creates the formation of trumpet-shaped microtubes and results in the inerratic and imperfect hexagonshaped cross section that appears. Moreover, the analytical results also show that the as-synthesized ZnO microtube arrays can exhibit better room-temperature photoluminescence behaviour.  相似文献   

8.
A simple synthesis route to high-quality sub-50 nm ZnO nanowires is reported, utilizing ZnO thin films grown by pulse laser deposition (PLD) as seed layers. Depending upon the PLD growth conditions, the surface morphology of the ZnO nanowires on ZnO film was distinctively different whereas the diameters were almost the same. With the increase of the concentration of zinc nitrate/methenamine solution from 0.002 to 0.02 M, the average diameter of the ZnO nanowire increased but remained sub-50 nm. The grown ZnO nanowires showed a high crystallinity with a low defect density confirmed by a sharp photoluminescence spectrum.  相似文献   

9.
The effect of acetylene partial pressure on the structural and morphological properties of multi-walled carbon nanotubes (MWCNTs) synthesized by CVD on iron nanoparticles dispersed in a SiO2 matrix as catalyst was investigated. The general growing conditions were: 110 cm3/min flow rate, 690 °C synthesis temperature, 180 Torr over pressure and two gas compositions: 2.5% and 10% C2H2/N2. The catalyst and nanotubes were characterized by HR-TEM, SEM and DRX. TGA and DTA were also carried out to study degradation stages of synthesized CNTs. MWCNTs synthesized with low acetylene concentration are more regular and with a lower amount of amorphous carbon than those synthesized with a high concentration. During the synthesis of CNTs, amorphous carbon nanoparticles nucleate on the external wall of the nanotubes. At high acetylene concentration carbon nanoparticles grow, covering all CNTs’ surface, forming a compact coating. The combination of CNTs with this coating of amorphous carbon nanoparticles lead to a material with high decomposition temperature.  相似文献   

10.
ZnO nanostructures were grown on silicon, porous silicon, ZnO/Si and AlN/Si substrates by low-temperature aqueous synthesis method. The shape of nanostructures greatly depends on the underlying surface. Scattered ZnO nanorods were observed on silicon substrate, whereas aligned ZnO nanowires were obtained by introducing sputtered ZnO film as a seed layer. Furthermore, both the combination of nanorods and the bunch of nanowires were found on porous silicon substrates, whereas platelet-like morphology was observed on AlN/Si substrates. XRD patterns suggest the crystalline nature of aqueous-grown ZnO nanostructures and high-resolution transmission electron microscopy images confirm the single-crystalline growth of the ZnO nanorods along [0 0 1] direction. Room-temperature photoluminescence characterization clearly shows a band-edge luminescence along with a visible luminescence in the yellow spectral range.  相似文献   

11.
The growth of ZnO film on Si(1 0 0) substrate has been studied with synchrotron radiation (SR) assisted MOCVD method. The diethylzinc (DEZn) and CO2 are used as source materials, while Nitrogen is employed as a carrier gas for DEZn. With the assistance of SR the ZnO film can be deposited even at room temperature. XRD, SEM and photoluminescence (PL) studies show that the crystal quality of ZnO films grown with the assistance of SR is higher than that of those without SR assistance. The growth mechanism of ZnO film with the SR assistant MOCVD system is primarily discussed.  相似文献   

12.
ZnO films were deposited on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD). Annealing treatments for as-deposited samples were performed in different atmosphere under various pressures in the same chamber just after growth. The effect of annealing atmosphere on the electrical, structural, and optical properties of the deposited films has been investigated by means of X-ray diffraction (XRD), atomic force microscope (AFM), Hall effect, and optical absorption measurements. The results indicated that the electrical and structural properties of the films were highly influenced by annealing atmosphere, which was more pronounced for the films annealed in oxygen ambient. The most significant improvements for structural and electrical properties were obtained for the film annealed in oxygen under the pressure of 60 Pa. Under the optimum annealing condition, the lowest resistivity of 0.28 Ω cm and the highest mobility of 19.6 cm2 v−1 s−1 were obtained. Meanwhile, the absorbance spectra turned steeper and the optical band gap red shifted back to the single-crystal value.  相似文献   

13.
We have investigated the phase separation and silicon nanocrystal (Si NC) formation in correlation with the optical properties of Si suboxide (SiOx, 0 < x < 2) films by thermal annealing in high vacuum. The SiOx films were deposited by plasma-enhanced chemical vapor deposition at different nitrous oxide/silane (N2O/SiH4) flow ratios. The as-deposited films show increased Si concentration with decreasing N2O/SiH4 flow ratio, while the deposition rate and surface roughness have strong correlations with the flow ratio in the N2O/SiH4 reaction. After thermal annealing at temperatures above 1000 °C, Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy manifest the progressive phase separation and continuous growth of crystalline-Si (c-Si) NCs in the SiOx films with increasing annealing temperature. We observe a transition from multiple-peak to single peak of the strong red-range photoluminescence (PL) with increasing Si concentration and annealing temperature. The appearance of the single peak in the PL is closely related to the c-Si NC formation. The PL also redshifts from ∼1.9 to 1.4 eV with increasing Si concentration and annealing temperature (i.e., increasing NC size). The good agreements of the PL evolution with NC formation and the PL peak energy with NC size distribution support the quantum confinement model.  相似文献   

14.
ZnO thin films were grown on (1 0 0) p-Si substrates by Photo-assisted Metal Organic Chemical Vapor Deposition (PA-MOCVD) using diethylzinc (DEZn) and O2 as source materials and tungsten-halogen lamp as a light source. The effects of tungsten-halogen lamp irradiation on the surface morphology, structural and optical properties of the deposited ZnO films have been investigated by means of atomic force microscope (AFM), X-ray diffraction and photoluminescence (PL) spectra measurements. Compared with the samples without irradiation, the several characteristics of ZnO films with irradiation are improved, including an improvement in the crystallinity of c-axis orientation, an increase in the grain size and an improvement in optical quality of ZnO films. These results indicated that light irradiation played an important role in the growth of ZnO films by PA-MOCVD.  相似文献   

15.
Photoluminescence (PL) spectra of nitrogen-doped ZnO films (ZnO:N films) grown epitaxially on n-type ZnO single crystal substrates by using the plasma-assisted reactive evaporation method were measured at 5 K. In PL spectra, free exciton emission at about 3.375 eV was very strong and emissions at 3.334 and 3.31 eV were observed. These two emissions are discussed in this paper. The nitrogen concentration in ZnO:N films measured by secondary ion mass spectroscopy was 1019-20 cm−3. Current-voltage characteristics of the junction consisting of an n-type ZnO single crystal substrate and ZnO:N film showed good rectification. Also, ultraviolet radiation and visible light were emitted from this junction under a forward bias at room temperature. It is therefore thought that ZnO:N films have good crystallinity and that doped nitrogen atoms play a role as acceptors in ZnO:N films to form a good pn junction. From these phenomena and the excitation intensity dependency of PL spectra, emissions at 3.334 and 3.31 eV were assigned to neutral acceptor-bound exciton (A0X) emission and a donor-acceptor pair (DAP) emission due to doped nitrogen, respectively.  相似文献   

16.
Mn-doped ZnO (Zn1−xMnxO, 0 ≤ x ≤ 0.1) films are prepared by an ultrasonic spray assisted chemical vapor deposition method. X-ray diffraction and Raman scattering show that all the Zn1−xMnxO films are good wurtzite structures without any impurity phases. Cathodoluminescence spectra show that ultraviolet emission and green luminescence can be observed. The intensity of ultraviolet emission decreases with the increment of x, while the intensity of green luminescence increases with the increment of x when x ≤ 0.02. However, when x (x > 0.02) is further increased, the intensity of green luminescence decreases gradually, and the green luminescence disappears when x is above 0.075. We consider that the change of the luminescence is related to the competition between the radiative recombination and the non-radiative recombination.  相似文献   

17.
Vertical ZnO nanoneedles with sharp tips are secondarily grown on tips of primarily grown ZnO micropyramids by a vapour transport process. The field emission (FE) properties exhibit a lower turn-on electric field and a higher field enhancement factor as compared with vertical ZnO microrods. This result indicates that ZnO nanoneedles have good optimum shapes for FE due to electron accumulation at sharp tips.  相似文献   

18.
ZnO thin films are prepared on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) at room temperature. Optical parameters such as optical transmittance, reflectance, band tail, dielectric coefficient, refractive index, energy band gap have been studied, discussed and correlated to the changes with film thickness. Kramers-Kronig and dispersion relations were employed to determine the complex refractive index and dielectric constants using reflection data in the ultraviolet-visible-near infrared regions. Films with optical transmittance above 90% in the visible range were prepared at pressure of 6.5 × 10−4 Torr. XRD analysis revealed that all films had a strong ZnO (0 0 2) peak, indicating c-axis orientation. The crystal grain size increased from 14.97 nm to 22.53 nm as the film thickness increased from 139 nm to 427 nm, however no significant change was observed in interplanar distance and crystal lattice constant. Optical energy gap decreased from 3.21 eV to 3.19 eV with increasing the thickness. The transmission in UV region decreased with the increase of film thickness. The refractive index, Urbach tail and real part of complex dielectric constant decreased as the film thickness increased. Oscillator energy of as-deposited films increased from 3.49 eV to 4.78 eV as the thickness increased.  相似文献   

19.
We have demonstrated the synthesis of one-dimensional (1D) structures of bismuth oxide (Bi2O3) by a reaction of a trimethylbismuth (TMBi) and oxygen (O2) mixture at 450 °C. Scanning electron microscopy showed that the product consisted of 1D materials with width or diameters less than 1 μm and lengths up to several tens of micrometers. The X-ray energy dispersive spectroscopy revealed that the materials contained elements of Bi and O. The results of X-ray diffraction and selected area electron diffraction pattern indicated that the obtained Bi2O3 were crystalline with monoclinic structure.  相似文献   

20.
The annealing effects of sapphire substrate on the quality of epitaxial ZnO films grown by metalorganic chemical vapor deposition (MOCVD) were studied. The atomic steps formed on (0 0 0 1) sapphire (α-Al2O3) substrate surface by annealing at high temperature was analyzed by atomic force microscopy (AFM). The annealing effects of sapphire substrate on the ZnO films were examined by X-ray diffraction (XRD), AFM and photoluminescence (PL) measurements. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate surface. The optimum annealing temperature of sapphire substrates is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号