首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical simulation of melting and solidification processes induced in CdTe by nanosecond radiation of ruby laser (λ = 694 nm, τ = 20 and 80 ns) and KrF excimer laser (λ = 248 nm, τ = 20 ns) taking into account components diffusion in melt and their evaporation from the surface has been carried out. Cd atoms evaporation has shown to essentially affect the dynamics of phase transitions in the near-surface region. Thus, in the case of the influence of ruby laser irradiation intensive surface cooling results in the formation of nonmonotone temperature profile with maximum temperature in semiconductor volume at the distance of ∼20 nm from the surface. The melt formed under the surface extends both to the surface and to the semiconductor volume as well. As a result of cadmium telluride components evaporation and diffusion in the melt the near-surface region is enriched with tellurium. The obtained melting threshold value of irradiation energy density is in a reasonable agreement with experimental data.  相似文献   

2.
Cd1−xMnxS nano-crystalline films (0 ≤ x ≤ 0.5) were formed on glass substrates by thermal evaporation technique at room temperature (300 K). AFM studies showed that all the films were in nano-crystalline form with the grain size varying in the range between 36 and 58 nm and exhibited hexagonal structure of the host material. The lattice parameters varied linearly with composition, following Vegard's law in the entire composition range. The nanohardness and Young's modulus decreased sharply with ‘Mn’ content upto x = 0.3 and increased with high Mn content.  相似文献   

3.
In this paper, extensive experimental results on broad-band double cladding Er3+-Yb3+ co-doped superfluorescent fiber sources (SFSs), characterizing their output power, mean wavelength, and bandwidth (BW) stability with variations of pump power, pump wavelength, and fiber temperature, have been reported. For a 55-cm fiber, SFS power from 3.7755 (maximum BW condition of more than 80 nm) to 9.1837 mW (maximum power condition, BW is about 34 nm) has been achieved. The SFS mean wavelength dependence on pump wavelength is highly pump temperature sensitive, and can be reduced to zero in a chosen pump temperature field. The intrinsic variation of the SFS mean wavelength λm with fiber temperature is also measured, and a linear variation from 15 to 45 °C with a slop of −0.053 nm/°C for Lf = 100 cm and −0.04 nm/°C for Lf = 55 cm is found.  相似文献   

4.
The crystal structural, magnetic and electrical transport properties of double perovskite CeKFeMoO6 have been investigated. The crystal structure of the compound is assigned to the monoclinic system with space group P21/n and its lattice parameters are a=0.55345(3) nm, b=0.56068(2) nm, c=0.78390(1) nm, β=89.874(2). The divergence between zero-field-cooling and field-cooling M-T curves demonstrates the anisotropic behavior. The Curie temperature measured from Cp-T curve is about 340 K. Isothermal magnetization curve shows that the saturation and spontaneous magnetization are 1.90 and 1.43 μB/f.u. at 300 K, respectively. The electrical behavior of the sample shows a semiconductor. The electrical transport behavior can be described by variable range hopping model. Large magnetoresistance, −0.88 and −0.18, can be observed under low magnetic field, 0.5 T, at low and room temperature, respectively.  相似文献   

5.
Thin films of eight metals with a thickness of 150 nm were deposited on mica substrates by thermal evaporation at various temperatures in a high vacuum. The surface morphology of the metal films was observed by atomic force microscopy (AFM) and the images were characterized quantitatively by a roughness analysis and a bearing analysis (surface height analysis). The films of Au, Ag, Cu, and Al with the high melting points were prepared at homologous temperatures T/Tm = 0.22-0.32, 0.40, and 0.56. The films of In, Sn, Bi, and Pb with the low melting points were prepared at T/Tm = 0.55-0.70, where T and Tm are the absolute temperatures of the mica substrate and the melting point of the metal, respectively. The surface morphology of these metal films was studied based on a structure zone model. The film surfaces of Au, Ag, and Cu prepared at the low temperatures (T/Tm = 0.22-0.24) consist of small round grains with diameters of 30-60 nm and heights of 2-7 nm. The surface heights of these metal films distribute randomly around the surface height at 0 nm and the morphology is caused by self-shadowing during the deposition. The grain size becomes large due to surface diffusion of adatoms and the film surfaces have individual characteristic morphology and roughnesses as T increases. The surface of the Al film becomes very smooth as T increases and the atomically smooth surface is obtained at T/Tm = 0.56-0.67 (250-350 °C). On the other hand, the atomically smooth surface of the Au film is obtained at T/Tm = 0.56 (473 ± 3 °C). The films of In, Sn, Bi, and Pb prepared at T/Tm = 0.55-0.70 also show the individual characteristic surface morphology.  相似文献   

6.
The development of integrated waveguide lasers for different applications such as marking, illumination or medical technology has become highly desirable. Diode pumped planar waveguide lasers emitting in the green visible spectral range, e.g. thin films from praseodymium doped fluorozirconate glass matrix (called ZBLAN, owing to the main components ZrF4, BaF2, LaF3, AlF3 and NaF) as the active material pumped by a blue laser diode, have aroused great interest. In this work we have investigated the deposition of Pr:ZBLAN thin films using pulsed laser radiation of λ = 193 and λ = 248 nm. The deposition has been carried out on MgF2 single crystal substrates in a vacuum chamber by varying both processing gas pressure and energy fluence. The existence of an absorption line at 210 nm in Pr:ZBLAN leads to absorption and radiative relaxation of the absorbed laser energy of λ = 193 nm preventing the evaporation of target material. The deposited thin films consist of solidified and molten droplets and irregular particulates only. Furthermore, X-ray radiation has been applied to fluoride glass targets to enhance the absorption in the UV spectral region and to investigate the deposition of X-ray treated targets applying laser radiation of λ = 248 nm. It has been shown that induced F-centres near the target surface are not thermally stable and can be easily ablated. Therefore, λ = 248 nm is not suitable for evaporation of Pr:ZBLAN.  相似文献   

7.
The thermal evolution of deuterium from thin titanium films, prepared under UHV conditions and deuterated in situ at room temperature, has been studied by means of thermal desorption mass spectrometry (TDMS) and a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The observed Ti film thickness dependent morphology was found to play a crucial role in the titanium deuteride (TiDy) film formation and its decomposition at elevated temperatures. TDMS heating induced decomposition of fine-grained thin Ti films, of 10-20 nm thickness, proceeds at low temperature (maximum peak temperature Tm about 500 K) and its kinetics is dominated by a low energy desorption (ED = 0.61 eV) of deuterium from surface and subsurface areas of the Ti film. The origin of this process is discussed as an intermediate decomposition state towards recombinative desorption of molecular deuterium. The TiDy bulk phase decomposition becomes dominant in the kinetics of deuterium evolution from thicker TiDy films. The dominant TDMS peak at approx. Tm = 670 K, attributed to this process, is characterized by ED = 1.49 eV.  相似文献   

8.
Zinc selenide (ZnSe) thin films (d = 0.11-0.93 μm) were deposited onto glass substrates by the quasi-closed volume technique under vacuum. Their structural characteristics were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). The experiments showed that the films are polycrystalline and have a zinc blende (cubic) structure. The film crystallites are preferentially oriented with the (1 1 1) planes parallel to the substrate surface. AFM images showed that the films have a grain like surface morphology. The average roughness, Ra = 3.3-6.4 nm, and the root mean square roughness, Rrms = 5.4-11.9 nm, were calculated and found to depend on the film thickness and post-deposition heat treatment.The spectral dependence of the absorption coefficient was determined from transmission spectra, in the range 300-1400 nm.The values of optical bandgap were calculated from the absorption spectra, Eg = 2.6-2.7 eV.The effect of the deposition conditions and post-deposition heat treatment on the structural and optical characteristics was investigated.  相似文献   

9.
The aim of the present work is to compare the structural, the composition and chemical state of the surface and magnetic properties of different nanosized CuFe2O4 powders exhibiting collective Jahn-Teller effect. The samples under examination consist of edged nanosized particles (needle like) with average length 1300 ± 20 nm and diameter 300 ± 20 nm obtained after high temperature synthesis, and superparamagnetic (at room temperature) spherical particles (d = 6 ± 2 nm), obtained by soft chemistry techniques. The surface composition of the particles was investigated by X-ray photoelectron spectroscopy (XPS). Mössbauer spectroscopy (MöS), including at high magnetic field up to 5 T and 4.2 K, was used for characterization of cation distribution in the samples. The data yielded by the XPS and MöS analyses for spherical nanosized particles led us to the assumption for the existence of a Jahn-Teller effect gradient—from the B-sublattice on the surface to a compensation of the tetragonal distortion in the two sublattices in the core. The analysis of the contribution of the anisotropy energy in edged and spherical nanoparticles shows that it must be considered as an effective value reflecting the influence of the individual factors depending on the particle shape and surface.  相似文献   

10.
Amorphous SiOx thin films with four different oxygen contents (x=1.15, 1.4, 1.5, and 1.7) have been prepared by thermal evaporation of SiO in vacuum and then annealed at 770 or 970 K in argon for various times ?40 min. The influence of annealing conditions and the initial film composition on photoluminescence (PL) from the annealed films has been explored. Intense room temperature PL has been observed from films with x?1.5, visible with a naked eye. It has been shown that PL spectra of most samples consists of two main bands: (i) a ‘green’ band centered at about 2.3 eV, whose position does not change with annealing conditions and (ii) an ‘orange-red’ band whose maximum moves from 2.1 to 1.7 eV with increasing annealing time and temperature and decreasing initial oxygen content. These observations have been explained assuming recombination via defect states in the SiOx matrix for the first band and emission from amorphous Si nanoparticles for the second one.  相似文献   

11.
High-coercivity Au(60 nm)/FePt(δ nm)/Au(60 nm) trilayer samples were prepared by sputtering at room temperature, followed by post annealing at different temperatures. For the sample with δ=60 nm, L10 ordering transformation occurs at 500 °C. Coercivity (Hc) is increased with the annealing temperature in the studied range 400–800 °C. The Hc value of the trilayer films is also varied with thickness of FePt intermediate layer (δ), from 27 kOe for δ=60 nm to a maximum value of 33.5 kOe for δ=20 nm. X-ray diffraction data indicate that the diffusion of Au atoms into the FePt L10 lattice is negligible even after a high-temperature (800 °C) annealing process. Furthermore, ordering parameter is almost unchanged as δ is reduced from 60 to 15 nm. Transmission electron microscope (TEM) photos indicate that small FePt Ll0 particles are dispersed amid the large-grained Au. We believe that the high coercivity of the trilayer sample is attributed to the small and uniform grain sizes of the highly ordered FePt particles which have perfect phase separation with Au matrix.  相似文献   

12.
The laser-induced backside wet etching (LIBWE) is an advanced laser processing method used for structuring transparent materials. LIBWE with nanosecond laser pulses has been successfully demonstrated for various materials, e.g. oxides (fused silica, sapphire) or fluorides (CaF2, MgF2), and applied for the fabrication of microstructures. In the present study, LIBWE of fused silica with mode-locked picosecond (tp = 10 ps) lasers at UV wavelengths (λ1 = 355 nm and λ2 = 266 nm) using a (pyrene) toluene solution was demonstrated for the first time. The influence of the experimental parameters, such as laser fluence, pulse number, and absorbing liquid, on the etch rate and the resulting surface morphology were investigated. The etch rate grew linearly with the laser fluence in the low and in the high fluence range with different slopes. Incubation at low pulse numbers as well as a nearly constant etch rate after a specific pulse number for example were observed. Additionally, the etch rate depended on the absorbing liquid used; whereas the higher absorption of the admixture of pyrene in the used toluene enhances the etch rate and decreases the threshold fluence. With a λ1 = 266 nm laser set-up, an exceptionally smooth surface in the etch pits was achieved. For both wavelengths (λ1 = 266 nm and λ2 = 355 nm), LIPSS (laser-induced periodic surface structures) formation was observed, especially at laser fluences near the thresholds of 170 and 120 mJ/cm2, respectively.  相似文献   

13.
Poly(acrylamide) [poly(AAm)] and poly(N-isopropyl-acrylamide) [poly(NIPAAm)] based gel films containing Au nanoparticles (d = 14 ± 2.5 nm) were synthesized. Monomers and cross-linker were added to a gold nanodispersion, and after the addition of the initiator, polymer films were prepared on the surface of an interdigital microelectrode by photopolymerization. In the course of the syntheses the gold concentration of the films was constant (10.8 μg/cm2) and the volume fraction of Au nanoparticles (?Au) in the polymer gel films varied in the range of 0.58-85.3%. Poly(AAm)-based films swell when the temperature increases: due to a temperature shift of 15 °C the Au plasmon absorption maximum at λ = ∼532 nm was shifted towards shorter wavelengths by 16.6 nm (blue shift) through the swelling of the polymer gel film. In the case of poly(NIPAAm) the temperature-induced shrinking resulted in a red shift, namely the maximum was shifted by 18.07 nm by a temperature shift of 15 °C. In the case of both composites, the electric conductivity of the samples was shown to increase with increasing Au particle concentration. In the case of the poly(AAm)-based composite containing ?Au = 0.85 gold the resistance of the film spread on the surface of the electrode was 0.16 MΩ at 25 °C and 0.66 MΩ at 50 °C, i.e. the conductivity of the sample decreased with increasing temperature. The opposite effect is observed in the case of the poly(NIPAAm)-based composite: as temperature is raised, the resistance of the composite abruptly drops at the point of collapse of the NIPAAm gel (it is 0.28 MΩ at 32 °C and only 0.021 MΩ at 35 °C). This thermosensitive effect was detectable only at sufficiently high Au contents (?Au = 0.85) in both gels.  相似文献   

14.
Semiconductor nanostructures with narrow band gap were synthesized by means of laser chemical vapor deposition (LCVD) of elements from iron carbonyl vapors [Fe(CO)5] under the action of Ar+ laser radiation (λL = 488 nm) on the Si substrate surface. The temperature dependence of the specific conductivity of these nanostructures in the form of thin films demonstrated typical semiconductor tendency and gave the possibility to calculate the band gap for intrinsic conductivity (Eg) and the band gap assigned for impurities (Ei), which were depended upon film thickness and applied electrical field. Analysis of deposited films with scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated their cluster structure with average size not more than 100 nm. Semiconductor properties of deposited nanostructures were stipulated with iron oxides in different oxidized phases according to X-ray photoelectron spectroscopy (XPS) analysis.These deposited nanostructures were irradiated with Q-switched YAG laser (λL = 1064 nm) at power density about 6 × 107 W/cm2. This irradiation resulted in the crystallization process of deposited films on the Si substrate surface. The crystallization process resulted in the synthesis of iron carbide-silicide (FeSi2−xCx) layer with semiconductor properties too. The width of the band gap Eg of the synthesized layer of iron carbide-silicide was less than for deposited films based on iron oxides Fe2O3−x (0 ≤ x ≤ 1).  相似文献   

15.
Temperature dependences of the Hall coefficient, Hall mobility and thermoelectric properties of Ni-doped CoSb3 have been characterized over the temperature range from 20 to 773 K. Ni-doped CoSb3 is an n-type semiconductor and the conduction type changes from n-type to p-type at around 450 K. The temperature for the transition from n-type to p-type increased with increasing Ni content x. The Seebeck coefficient reaches a maximum value near the transition temperature. The electrical resistivity indicates that Co1−xNixSb3 is a typical semiconductor when x≤0.03 and a degenerate semiconductor when x>0.03. Thermal conductivity analyses show that the lattice component is predominant at lower temperatures and carrier and bipolar components become large at temperatures higher than the transition temperature. The thermoelectric figure of merit reaches a maximum value close to the transition temperature and the largest value, 4.67×10−4 K−1 at 600 K, was obtained for x=0.05.  相似文献   

16.
The photoluminescence spectra of InAs quantum dots (QDs) embedded into four types of InxGa1−xAs/GaAs (x = 0.10, 0.15, 0.20 and 0.25) multi quantum well MBE structures have been investigated at 300 K in dependence on the QD position on the wafer. PL mapping was performed with 325 nm HeCd laser (35 mW) focused down to 200 μm (110 W/cm2) as the excitation source. The structures with x = 0.15 In/Ga composition in the InxGa1−xAs capping layer exhibited the maximum photoluminescence intensity. Strong inhomogeneity of the PL intensity is observed by mapping samples with the In/Ga composition of x ≥ 0.20-0.25. The reduction of the PL intensity is accompanied by a gradual “blue” shift of the luminescence maximum at 300 K as follows from the quantum dot PL mapping. The mechanism of this effect has been analyzed. PL peak shifts versus capping layer composition are discussed as well.  相似文献   

17.
The propagation of electromagnetic energy via coupled surface plasmon polariton modes in a metal-insulator-metal heterostructure is analyzed analytically for a core material exhibiting optical gain. It is shown that a sufficiently large gain can completely compensate for the absorption losses due to energy dissipation in the metallic boundaries, enabling long-range transport with a confinement below the diffraction limit for on-chip switching and sensing applications. For a free-space wavelength of 1500 nm, lossless propagation in a gold-semiconductor-gold waveguide with a core size of 50 nm is predicted for a gain coefficient γ = 4830 cm−1, comparable to that of semiconductor gain media. The gain requirements decrease with the use of low-index nanocrystal-doped glasses or polymers as core materials.  相似文献   

18.
A series of PdxNi1 − x nanoparticles in a diameter of 6-7 nm were prepared by wet chemical reduction. They were then modified with two surfactants, stearic acid (SA) and polyethylene glycol (PEG). Desorption of the surfactant was studied using a temperature programmed desorption technique, and the sintering behavior of surface-modified PdxNi1 − x nanoparticles was examined. Since surface energy of the nanoparticles depends on the alloy composition, it can be correlated with the desorption temperature of surfactant from the nanoparticle surface. Because Ni has a higher surface energy, the surfactant desorption temperature increases as the Ni content increases. With the same stoichiometry, the desorption temperature of SA is always higher than that of PEG. The SA-modified nanoparticles have higher thermal stability and are less sintered than PEG-modified nanoparticles. The sintering and growth behavior of the nanoparticles can be correlated with variation of surface energy due to different surface modification.  相似文献   

19.
Magnetic properties of Co nanoparticles of 1.8 nm diameter embedded in Mn and Ag matrices have been studied as a function of the volume fraction (VFF). While the Co nanoparticles in the Ag matrix show superparamagnetic behavior with TB=9.5 K (1.5% VFF) and TB=18.5 K (8.9% VFF), the Co nanoparticles in the antiferromagnetic Mn matrix show a transition peak at ∼65 K in the ZFC/FC susceptibility measurements, and an increase of the coercive fields at low temperature with respect to the Ag matrix. Exchange bias due to the interface exchange coupling between Co particles and the antiferromagnetic Mn matrix has also been studied. The exchange bias field (Heb), observed for all Co/Mn samples below 40 K, decreases with decreasing volume fraction and with increasing temperature and depends on the field of cooling (Hfc). Exchange bias is accompanied by an increase of coercivity.  相似文献   

20.
Bismuth trioxide (Bi2O3) thin films were prepared by dry thermal oxidation of metallic bismuth films deposited by vacuum evaporation. The oxidation process of Bi films consists of a heating from the room temperature to an oxidation temperature (To = 673 K), with a temperature rate of 8 K/min; an annealing for 1 h at oxidation temperature and, finally, a cooling to room temperature. The optical transmission and reflection spectra of the films were studied in spectral domains ranged between 300 nm and 1700 nm, for the transmission coefficient, and between 380 nm and 1050 nm for the reflection coefficient, respectively. The thin-film surface structures of the metal/oxide/metal type were used for the study of the static current-voltage (I-U) characteristics. The temperature of the substrate during bismuth deposition strongly influences both the optical and the electrical properties of the oxidized films. For lower values of intensity of electric field (ξ < 5 × 104V/cm), I-U characteristics are ohmic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号