首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The article reports on correlations between the process parameters of reactive pulsed dc magnetron sputtering, physical properties and the photocatalytic activity (PCA) of TiO2 films sputtered at substrate surface temperature Tsurf ≤ 180 °C. Films were deposited using a dual magnetron system equipped with Ti (Ø50 mm) targets in Ar + O2 atmosphere in oxide mode of sputtering. The TiO2 films with highly photoactive anatase phase were prepared without a post-deposition thermal annealing. The decomposition rate of the acid orange 7 (AO7) solution during the photoactivation of the TiO2 film with UV light was used for characterization of the film PCA. It was found that (i) the partial pressure of oxygen pO2 and the total sputtering gas pressure pT are the key deposition parameters influencing the TiO2 film phase composition that directly affects its PCA, (ii) the structure of sputtered TiO2 films varies along the growth direction from the film/substrate interface to the film surface, (iii) ∼500 nm thick anatase TiO2 films with high PCA were prepared and (iv) the structure of sputtered TiO2 films is not affected by the substrate surface temperature Tsurf when Tsurf < 180 °C. The interruption of the sputtering process and deposition in long (tens of minutes) pulses alternating with cooling pauses has no effect on the structure and the PCA of TiO2 films and results in a decrease of maximum value of Tsurf necessary for the creation of nanocrystalline nc-TiO2 film. It was demonstrated that crystalline TiO2 films with high PCA can be sputtered at Tsurf ≤ 130 °C. Based on obtained results a phase zone model of TiO2 films was developed.  相似文献   

2.
TiO2 and TiO2/ZnO double layer films were sputtered on glass substrates. It was found that a thin ZnO underlayer is helpful for tailoring the microstructure and surface morphology of the TiO2 film. By applying a 70-nm-thick ZnO underlayer, a TiO2 thin film of 100 nm in thickness with well crystallized anatase phase and rough surface was successfully fabricated without heating the substrate. Relatively high photo-catalytic activity and good hydrophilic properties were observed in such TiO2/ZnO double layer films.  相似文献   

3.
采用聚苯乙烯小球修饰Ti片表面,并进行阳极氧化,制备出一种由纳米颗粒和纳米管构成的TiO2膜.通过数值模拟,分析了氧化表面附近的局部电场分布对TiO2膜形貌的影响.结果表明,覆盖物增强了局部电场,从而加快了O2-与Ti的反应速率,有利于TiO2的生长;与此同时,[TiF6]6-的扩散受到阻碍,使得TiO2的溶解速率减慢.可见,覆盖物打破了TiO2纳米管形成的平衡条件,导致纳米颗粒的生成.此外,通过X射线衍射和Raman光谱的测试分析发现,所制备的TiO2为锐钛矿结构.  相似文献   

4.
以四氯化钛为源物质,氩气为载气,氧气为反应气体,利用低温等离子体增强化学气相沉积在硅基表面制备出了TiO2薄膜。使用场发射扫描电子显微镜、X射线衍射仪等检测分析表征TiO2薄膜的性能与性质,并探讨了工艺条件如基片材料、沉积时间和基片温度对薄膜性能的影响。结果表明:制备的薄膜表面光滑均匀,结构致密,最小晶粒尺寸约15 nm;薄膜的晶型主要依赖于沉积温度,低于300℃沉积的薄膜是无定形的,300℃之上沉积的薄膜是锐钛矿结构。  相似文献   

5.
By dipping-lifting in sol-gel solution and reducing process, the graphene/TiO2 composite film on the glass plate was first prepared. Then, the Ag/graphene/TiO2 composite film was fabricated by interface reaction with AgNO3 and N2H4·H2O on the surface of graphene/TiO2 composite film. The characterization results show that the uniform porous TiO2 film is made up of the anatase crystal, and the Ag/graphene/TiO2 composite film is constructed by doping or depositing graphene sheets and Ag nanoparticles on the surface of TiO2 film. The photoelectrochemical measurement results indicate that the Ag/graphene/TiO2 composite film has an excellent photoelectrochemical conversion property.  相似文献   

6.
In this paper we report on the effect of annealing on the microsctructural and optoelectronic properties of titanium dioxide (TiO2) thin films prepared using sol-gel method onto silicon (Si) (100) and quartz substrates. The annealing temperatures range from 200 to 1000 °C. The Microstructural properties of annealed thin films were investigated by Thermal gravimetric analyses (TGA), X-ray diffraction (XRD) and Raman Spectroscopy. The surface morphology of the film was examined using Atomic Force Microscopy (AFM) method. The optical properties of TiO2 thin films were characterized using UV-VIS and Spectroscopic ellipsometry. The results have shown that the TiO2 thin films persist in the anatase phase even after annealing at 800 °C. The phase transformation from anatase to rutile occurred only when the films were annealed at 1000 °C. AFM studies revealed nanocrystalline structure where their shape and density depend strongly on the annealing temperatures. The elaborated nanostructured-TiO2 thin films present a high transparency in the visible range. Spectroscopic ellipsometry (SE) study was used to determine the effect of annealing temperature on the thickness and on the optical constant of TiO2 thin films. Spectroscopic ellipsometry and UV-VIS shows that the band gap of TiO2 thin films was found to decrease when the annealing temperature increases. The Anatase phase was find to show higher photocatalytic activity than the rutile one.  相似文献   

7.
Nanocrystalline titanium dioxide (TiO2) thin films composed of densely packed nanometer-sized grains have been successfully deposited onto an indium-doped-tin oxide (ITO) substrate. Then cadmium sulphoselenide (CdSSe) thin film was deposited onto pre-deposited TiO2 to form a TiO2/CdSSe film, at low temperature using a simple and inexpensive chemical method. The X-ray diffraction, selected area electron diffraction, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and water contact angle techniques were used for film characterization. Purely rutile phase of TiO2 with super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 30-40 (±2) nm was observed. The increase in optical absorption was observed after CdSSe film deposition. Nest like surface morphology of CdSSe on TiO2 surface results in air trapping in the crevices which prevents water from adhering to the film with increase in water contact angle. Photosensitization of TiO2 with CdSSe was confirmed with light illumination intensity of 80 mW/cm2.  相似文献   

8.
For photocatalytic thin film applications TiO2 is one of the most important materials. The most studied TiO2 crystal phase is anatase, though also rutile and brookite show good photoactivity. Usually anatase or a mixture of rutile and anatase is applied for powder or thin film catalysts. It has been claimed that amorphous films do not exhibit any or only a very low photocatalytic activity.We have deposited amorphous thin films by dc magnetron sputtering from sub-stoichiometric TiO2−x targets. The coatings are transparent and show a photocatalytic activity half of that of a thin layer of spin-coated reference photocatalyst powder. Annealing the thin films to yield anatase crystallization more than doubles their photocatalytic activity. At the same film thickness these thin films show the same activity as a commercially available photocatalytic coating.The dependence of the photocatalytic activity on deposition parameters like gas pressure and sputter power is discussed. A decrease in film density, as deduced from the refractive index and the microstructure, resulted in an increase in photocatalytic activity. Film thickness has a marked influence on the photocatalytic activity, showing a strong increase up to 300-400 nm, followed by a much shallower slope.  相似文献   

9.
Porous TiO2 films were deposited on SiO2 pre-coated glass-slides by sol-gel method using octadecylamine (ODA) as template. The amount of ODA in the sol played an important role on the physicochemical properties and photocatalytic performance of the TiO2 films. The films prepared at different conditions were all composed of anatase titanium dioxide crystals, and TiO2 crystalline size got larger with increasing ODA amount. The maximum specific surface area of 41.5 m2/g was obtained for TiO2 powders prepared from titanium sol containing 2.0 g ODA. Methyl orange degradation rate was enhanced along with increasing ODA amount and reached the maximal value at 2.0 g addition of ODA. After 40 min of UV-light irradiation, methyl orange degradation rate reached 30.5% on the porous film, which was about 10% higher than that on the smooth film. Porous TiO2 film showed almost constant activity with slight decrease from 30.5% to 28.5% after 4 times of recycles.  相似文献   

10.
The low-temperature synthesis of anatase TiO2 films was an imperative requirement for their application to corrosion prevention of metals. In this paper, a liquid phase deposition (LPD) technique was developed to prepare TiO2 films on SUS304 stainless steel (304SS) at a relatively low temperature (80 °C). The as-prepared films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photon spectroscopy (XPS). It was observed that a dense and crack-free anatase TiO2 film with a thickness about 300 nm was obtained. The film contained some fluorine and nitrogen elements, and the amounts of these impurities were greatly decreased upon calcination. Under the white light illumination, the electrode potential of TiO2 coated 304SS rapidly shifted to a more negative direction. Moreover, the photopotential of TiO2/304SS electrode showed more negative values with increased film thickness. In conclusion, the photogenerated cathodic protection of 304SS was achieved by the low-temperature LPD-derived TiO2 film.  相似文献   

11.
Cobalt Sulfophthalocyanine (CoSPc) sensitized TiO2 sol samples were prepared through a Sol-Gel method using Cobalt Sulfophthalocyanine as a sensitizer. Loading and modified floating photocatalyst was prepared by hydrothermal method using fly-ash cenospheres as a carrier. The properties of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance spectrum (DRS). Photocatalytic activity was studied by degrading wastewater of methylene blue under visible light. The results indicate that the fly-ash cenospheres are covered by modified TiO2 film which composed of the anatase, brookite and rutile misch crystal phase. CoSPc/TiO2/fly-ash cenospheres samples have good catalytic activity under visible light, and have strong absorbency during 600-700 nm. The sensitization of CoSPc can enhance visible light catalytic activity of TiO2/fly-ash cenospheres. The degradation rate of methylene blue reaches 73.36% in 180 min under the visible light illumination. But too much CoSPc can decrease its catalytic activity.  相似文献   

12.
Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl4 solution containing TiO2 colloid and accompanied by the TiO2 particles, were deposited on the substrate surface. The film consisting of Au/TiO2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO2 film was also discussed.  相似文献   

13.
The Raman spectroscopy method was used for structural characterization of TiO2 thin films prepared by atomic layer deposition (ALD) and pulsed laser deposition (PLD) on fused silica and single-crystal silicon and sapphire substrates. Using ALD, anatase thin films were grown on silica and silicon substrates at temperatures 125–425 °C. At higher deposition temperatures, mixed anatase and rutile phases grew on these substrates. Post-growth annealing resulted in anatase-to-rutile phase transitions at 750 °C in the case of pure anatase films. The films that contained chlorine residues and were amorphous in their as-grown stage transformed into anatase phase at 400 °C and retained this phase even after annealing at 900 °C. On single crystal sapphire substrates, phase-pure rutile films were obtained by ALD at 425 °C and higher temperatures without additional annealing. Thin films that predominantly contained brookite phase were grown by PLD on silica substrates using rutile as a starting material.  相似文献   

14.
Nanostructured sol-gel TiO2 thin films spin coated on silicate glass plates are subjected to excimer (KrF*) pulsed laser irradiation in order to tailor their structure and photocatalytic properties. The surface morphology of virgin and laser-processed films are followed applying electron optical imaging and atomic force microscopy. The evolution of the surface roughness and pore formation are shown to be accompanied by optical absorption edge shift to infrared wavelength range. Conventional X-ray diffraction analysis and high-resolution transmission electron imaging are applied in order to obtain information on the phase composition. Co-existence of amorphous and anatase TiO2 phases in nonirradiated sol-gel films is found. It is established that after laser processing the most intense XRD anatase peak is shifted to lower 2θ range. The analysis of high-resolution transmission electron images of film profiles evidences for the laser induced phase transitions. Formation of rutile and brookite TiO2 accompanied by evolution of oxygen deficient TinO2n−1 phases are identified in the subsurface region. The contribution of laser processing for increasing the photocatalytic efficiency of laser-modified films toward the oxidation of methylene blue water solution is demonstrated. The results obtained reveal a novel-processing route for designing sol-gel titania films with improved photocatalytical activity.  相似文献   

15.
反应溅射法制备TiO2薄膜   总被引:10,自引:0,他引:10       下载免费PDF全文
赵坤  朱凤  王莉芳  孟铁军  张保澄  赵夔 《物理学报》2001,50(7):1390-1395
报道了用反应溅射法制备TiO2薄膜的实验研究.详细研究了氧分压、基底温度和退火温度对成膜结构的影响.制备出了具有金红石和锐钛矿晶体结构的TiO2薄膜.分析了金红石和锐钛矿晶体的形成条件,并对薄膜的表面形貌进行了测量. 关键词: 反应溅射 2薄膜')" href="#">TiO2薄膜  相似文献   

16.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

17.
Silver nanorods with average diameters of 120-230 nm and aspect ratio of 1.7-5.0 were deposited on the surface of TiO2 films by photoelectrochemical reduction of Ag+ to Ag under UV light. The composite films prepared on soda-lime glass substrates were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the TiO2 film after UV irradiation in AgNO3 solution is composed of anatase phase TiO2 and metallic silver with face centered cubic structure. Other compounds cannot be found in the final films. The maximum deposition content of silver particles on the surface of TiO2 film was obtained with the AgNO3 concentration of 0.1 M. The kinetic growth rates of silver particles can be controlled by photocatalytic activity of TiO2 films. The studies suggest that the growth rates of silver particles increase with the enhancement of photocatalytic activity of TiO2 films. The maximum growth rate of silver particles loaded on TiO2 films can be up to 0.353 nm min−1 among samples 1#, 2# and 3#, while the corresponding apparent rate constant of TiO2 is 1.751 × 10−3 min−1.  相似文献   

18.
The aim of this work was to investigate the photocatalytic (PC) reduction of potassium chromate by Zn-doped TiO2/Ti film catalysts. The film catalyst was prepared by plasma electrolytic oxidation method in H2SO4 solution with different dosages of ZnSO4. The composition and structure of the film catalysts was studied by XRD, SEM and EPMA. The removal rate of potassium chromate was investigated under the conditions of the different dosages of ZnSO4 and the initial concentration of chromate potassium, and the reductive product during the PC reduction process was analyzed. The results showed that the film catalyst was composed of anatase TiO2 and rutile TiO2 with the porous structure. When the dosage of ZnSO4 was 0.2 g/L, the film catalyst presented the highest catalytic activity, which related to the amount and the crystal grain size of anatase TiO2 in the film. The PC reduction of potassium chromate by the film catalyst obeyed the pseudo-first-order kinetic equation. The UV-vis spectrum and XPS analyses proved that chromate Cr(VI) was reduced to Cr(III), which existed in the form of insoluble Cr(OH)3.  相似文献   

19.
Recent progress in ultrafine-grained/nano-grained (UFG/NG) titanium permits a consideration for TiO2 films deposited on nano-grained titanium for antithrombogenic application such as artificial valves and stents. For this paper, the microstructure, interface bonding, surface energy, and blood compatibility features of TiO2 films deposited by direct current magnetron reactive sputtering technology on NG titanium and coarse-grained (CG) titanium were investigated. The results show that the nanocrystallization of titanium substrate has a significant influence on TiO2 films. At the same deposition parameters, the content of rutile phase of TiO2 film was increased from 47% (on the CG titanium substrate) to 72% (on the NG titanium substrate); the adhesion of TiO2 film was improved from 5.8 N to 17 N; the surface energy was reduced from 6.37 dyn/cm to 3.01 dyn/cm; the clotting time was improved from 18 min to 28 min; the platelets accumulation and pseudopodium of adherent platelets on TiO2 film on NG titanium were considerably reduced compared to that on CG titanium. The present results demonstrate the possibility of improving the blood compatibility of TiO2 film through the approach of substrate nanocrystallization. Also it may provide an attractive idea to prepare stents with biological coatings of more outstanding blood compatibility and interface bonding.  相似文献   

20.
TiO2 nanopowder is produced by the low-temperature hydrolysis of TiCl4. The phase composition of the sample is found to form at a hydrolysis temperature of 30–38°C. Low-temperature annealing (up to 440°C) increases the degree of crystallinity of the phases present in the sample (anatase, brookite) and only weakly affects their ratio. At 500°C, the sample consists of three phases: rutile is detected apart from anatase and brookite. Brookite begins to fail at 600°C; at 700°C, crystalline brookite fails completely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号